Category: Education

Martha Sloan: Tech Tales Emeritus

Professor Emerita Martha Sloan changed the face of both Michigan Tech and engineering education.

Martha Sloan shares her knowledge on Husky Bites, a free, interactive Zoom webinar this Monday, February 28 at 6 pm ET. Learn something new in just 30 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 2/28 at 6 ET? Grab a bite with Dean Janet Callahan and Michigan Tech Professor Emerita Martha Sloan, whose impact on people on and off the Michigan Tech campus has been monumental. During Husky Bites, Prof. Sloan will share stories from an earlier time at Michigan Tech, when women in engineering were few and far between.

Joining in during Husky Bites will be Dan Fuhrmann, the Dave House Professor of Computer Engineering and chair of the Department of Applied Computing at Michigan Tech.

“Martha was a faculty member in the Department of Electrical and Computer Engineering when I first came to Michigan Tech in 2008 to take the position of ECE department chair,” notes Fuhrmann. “Shortly thereafter I appointed her as associate chair, a position she held until 2012, just before her retirement after 43 years of service at Michigan Tech.”

Applied Computing Department Chair Dan Fuhrmann

A pioneer in many aspects of her career, Sloan is also a legendary mentor who always has time to help anyone who asks. She was the first woman to be hired as a faculty member in the Michigan Tech ECE department, and later became the first woman to serve as chair of the department. Sloan was also the first woman to become the president of the Institute of Electrical and Electronics Engineers (IEEE), the largest professional organization in the world.

Sloan earned all of her three degrees–a BS in Electrical Engineering with great distinction, an MS in Electrical Engineering, and a PhD in Education–at Stanford University. She earned her BSEE in 1961, Phi Beta Kappa and with great distinction, as the only woman among approximately 600 engineering graduates.

Prof. Sloan took home the ASEE Outstanding Young Electrical Engineering Educator Award.

In the 1960s she worked at the Palo Alto Research Laboratory of the Lockheed Missiles and Space Company. She began a PhD program at the Massachusetts Institute of Technology but, feeling isolated there and pregnant with her first child, she did not complete the program. Instead, she moved to Germany, where she taught for two years at the Frankfurt International School. 

“My German was not good enough to be able to work as an engineer, so I taught 7th and 8th grade science, and picked up a MS in secondary education–all  in German–while I was there, too,” Sloan recalls. 

In 1969 Sloan moved to Houghton, Michigan with her husband, Norman Sloan, who had accepted a position as a professor of ornithology, forestry, and wildlife management at Michigan Tech.

As a role model and mentor, Dr. Martha Sloan supports women across campus and around the globe.

“I found myself looking for a job once again and thought I’d go back to teaching,” she says. “At the time there was no need for math or science teachers in the Houghton area. On sheer impulse, I wandered into Michigan Tech’s EE department, just to see if they needed a teacher, since I had a master’s degree. I was hired on the spot to teach Circuits.”

Needing a doctorate for her new job at Michigan Tech, Sloan returned to Stanford to earn a PhD in Education in 1973. Her thesis was on the COSINE Committee, an NSF-funded project to include computer engineering as part of the electrical engineering curriculum. 

Sloan became active in engineering professional societies, serving as treasurer, vice president, and president of the IEEE Computer Society, IEEE, and AAES. She served for nine years on the board of trustees of SWE, the Society of Women Engineers.

To pay tribute to Dr. Martha Sloan’s impressive legacy at Tech and her groundbreaking achievements, ECE alumna Jane Fryman Laird ’68 dedicated a bench at Husky Plaza in Dr. Sloan’s honor. 

Over the years Sloan has been honored with the Frederick Emmons Terman Award by the American Society for Engineering Education (ASEE), the IEEE Centennial Medal, and the IEEE Richard E. Merwin Distinguished Service Award. She received an honorary doctorate from Concordia University, was elected fellow of the Association for Computing Machinery, given the Distinguished Engineering Educator Award of the Society of Women Engineers (SWE), and earned the Michigan Tech Distinguished Service Award, too. (Read Professor Sloan’s complete bio on Wikipedia.)

In 1991 Sloan became a fellow of the IEEE “for contributions to engineering education, leadership in the development of computer engineering education as a discipline, and leadership in extending engineering education to women.”

I’ve liked math and science since grade school, especially physics.

Professor Emerita Martha Sloan

Prof. Sloan, How did you first get into engineering? What sparked your interest?

Dr. Sloan holds her infant grandchild
Prof. Sloan is recognized by the Michigan Tech Alumni Association as an Honorary Michigan Tech Alumna.

The summer before my senior year in high school, I attended a five-week science and technology program at Northwestern University’s National High School Institute, with lectures and labs on all science and engineering programs Northwestern offered, plus field trips to industry in northern Illinois and Indiana. I was particularly enchanted by a unit on AC circuits taught from a book by Kerchner and Corcoran, which I later learned was the standard college text on the subject. By the end of the summer I was the top student in the program—I didn’t know there was a contest—and won a full scholarship to Northwestern. But I didn’t go to Northwestern; I went to Stanford, which I chose because the campus was so beautiful. This was before Stanford was as highly ranked as it is today (it was near the bottom of the top 20).

Prof. Sloan with her children and their spouses, all highly accomplished and then some.

I intended to major in physics, but then, in the  summer just before my freshman year, a letter arrived from Stanford advising me that if I had any thought of possibly majoring in engineering, I should start in engineering because transferring out was easy but transferring in might delay my graduation. So I chose electrical engineering, based on liking AC circuits.

Hometown and family?

I was born in Aurora, Illinois to an obstetrician and stay-at-home mom. They had both majored in chemistry in college. My brother became a math professor and assistant chair of the math department at the University of Illinois.

Three of Prof. Sloan’s adorable grandkids!

My daughter is a law professor at Chicago Kent. Her daughter (my granddaughter) earned an MS in Public Health and conducts research in Boston on comorbidities, when a patient has two or more diseases or medical conditions the same time. She has boy-girl twins who are now both studying medicine at different medical schools in Chicago. In addition, my great granddaughter’s longtime boyfriend is studying at a third Chicago medical school—so the family has Chicago medical schools almost covered! 

My son graduated from the US Naval Academy, spent 20 years in the Marines, and is now working on safety aspects of autonomous vehicles for General Motors. He and his wife, also a USNA graduate, have three young children.

Any hobbies? Pets? What do you like to do in your spare time?

I have two springer spaniels. I spend my spare time reading–and doing some writing, too. I’ve taken two classes on writing memoirs in the past year.

Prof. Dan Fuhrmann’s research focus: signal processing.

Prof. Furhmann, how did you first get into engineering and computing? What sparked your interest?

I was good at math and science in junior high and high school, so it just seemed like a natural path.

Hometown, family?

Born in Bartlesville, Oklahoma and later moved to Tulsa, Oklahoma. I am the youngest of four children. Currently married 26 years with three grown children in a blended family.

Upper Peninsula of Michigan, or Steamboat Springs, Colorado? Find out during Husky Bites!

What do you like to do in your spare time?

Jamming on the deck!

I’ve played piano semi-professionally my entire adult life, including jazz, pop, rock, and salsa. I enjoy both downhill and cross-country skiing. I try to take advantage of the Copper Country winters!

Read more

Jane Fryman Laird ’68 and Dr. Martha Sloan – Blazing a Trail for Generations of Tech Women
Martha Sloan IEEE Computer Society President and Award Recipient
Oral History Transcript – Martha Sloan: Engineering and Technology History Wiki

Interview with Dr. Sarah Rajala ’74

Sage advice from Dr. Sarah Rajala: “Take ownership of your learning!”

Michigan Tech electrical engineering alumna Dr. Sarah Rajala is professor emeritus and former dean of engineering at Iowa State University. She’s an internationally-known leader in the field of engineering education—and a pioneering ground breaker for women in engineering. She serves as a role model for young women and is passionate about diversity of thought and culture, especially in a college environment.

This month we celebrate with Dr. Rajala—she was elected to the National Academy of Engineering, one of the highest professional recognitions in engineering.

Dr. Rajala, how did Michigan Tech prepare you as a leader in engineering education? Or simply as a leader?

Being the only female in my electrical engineering class, I experienced numerous gender biases. In the early 1970s, there was still much skepticism about whether ‘a girl could be an engineer’. My experiences laid a foundation for my commitment to creating a more inclusive culture in engineering and in engineering education, in general. 

You have kept busy, pushing the boundaries across your entire career. What advice do you have for mid-career people looking for their next challenges and opportunities?

First, take advantage of the opportunities that are offered, especially if they allow you to expand your boundaries. Don’t be shy about raising your hand and indicating your interest. Professional societies are great places to find new challenges and opportunities. Of course, it is also important to set your priorities and know when to say no. Also keep in mind that there is no single path that is right for everyone.  

Based on what you’ve learned as an educator, do you have one or two pieces of advice for a high school junior or senior?

We each learn new material in different ways. Don’t decide you dislike a subject because you don’t like the way the teacher presents the material. And don’t be afraid to ask questions or ask the teacher if she/he can present the topic differently. Alternatively, work with your fellow students or another teacher who can help you explore the topic in a different way. Search the internet. There are many good resources out there that can supplement what you are learning in class. Take ownership of your learning!

What qualities do students need to develop in themselves in order to become solvers of problems?

Start with the fundamentals. Be inquisitive. Write down what you know and try to start working the problem. If you are really stuck, ask for help. Show someone what you have done so far, then ask for a hint to help you get started.  You will learn more, if you can get started and work the rest out for yourself.

Where do you think engineering education will be 20 years from now?

I hope we are more inclusive! No matter how one learns, we should be able to adapt our instructional approaches to engage and motivate everyone. Technology will likely play a larger role in the learning process. There will be an increasing number of new subjects to learn. Students and educators will all need to adapt to new ways to teach and learn. 

Samson A. Jenekhe, Michigan Tech Alumnus, Elected to the National Academy of Engineering

Professor Sam Jenekhe’s pioneering polymer research paved the way for commercial OLEDs

Michigan Tech alumnus Samson A Jenekhe ’77 has been elected to the National Academy of Engineering, among the highest professional distinctions accorded to an engineer. Dr. Jenekhe is honored for discovery and understanding of conjugated materials for organic light-emitting diodes (OLEDs) widely used in the commercial sector.

A professor of chemistry and the Boeing-Martin Professor of Chemical Engineering at the University of Washington, Jenekhe studies the fundamental physical and chemical properties of semiconductor materials, as well as their practical applications. Research topics have included organic and flexible electronics, the use of organic light-emitting diodes for lighting and displays, energy storage and conversion systems, semiconducting polymers and polymer-based photovoltaic systems.

Jenekhe is a Chemical Engineer who earned his BS at Michigan Tech and his MS, MA, and PhD at the University of Minnesota. Jenekhe worked as a research scientist for Honeywell, Inc. and later joined the faculty at the University of Rochester, before joining the faculty at the University of Washington in 2000.

He is a fellow of the American Association for the Advancement of Science, the Royal Society of Chemistry and the American Physical Society, which in 2021 also awarded him the Polymer Physics Prize. He also received the Charles M.A. Stine Award for Excellence in Materials Science from the American Institute for Chemical Engineers in 2014.

Read More

Samson A. Jenekhe’s Pioneering Polymer Work Paved the Way for Commercial OLEDs
US Department of Energy: OLED Basics

Watch

Distinguished Chemical Engineering Seminar given by Professor Samson Jenekhe, University of Washington. Held on 2 March 2016 at the Department of Chemical Engineering, Imperial College London.

Play Plastic electronics and photovoltaics video
Preview image for Plastic electronics and photovoltaics video

Plastic electronics and photovoltaics

Zhanping You: Where the Rubber Meets the Road

Professor Zhanping You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. 
Professor Zhanping You

Zhanping You generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan back on Monday, February 21. You can view the YouTube recording of his session to learn something new in just 30 minutes (or so). Here’s the link to watch. Register for future sessions of Husky Bites at mtu.edu/huskybites. Grab some supper, or just flop down on your couch. Everyone’s welcome! It’s BYOC (Bring Your Own Curiosity).

Dr. Zhanping You, a Distinguished Professor of Transportation Engineering in the Department of Civil, Environmental and Geospatial Engineering, uses old tires to make new roads. One of Prof. You’s doctoral students, Dongzhao “Kobe” Jin, joined in to talk about the process.

Kobe Jin

Dr. You works with recycled materials to improve asphalt pavement performance. Crumb rubber, made from scrap tires, is one such material. ”Crumb rubber in asphalt reduces rutting and cracks and extends life, and it lowers noise levels,” he says. 

Scrap tires are plentiful, though not in a good way. “Hundreds of millions of scrap tires are generated in the US every year,” he notes. “Those giant piles of waste tires pose concerns of potential contamination of local groundwater and fire risk.”

You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. “We do it through various experimental and numerical modeling techniques,” You explains. “Our research team has also expanded the work to include field pilot projects, too. Over the past 6-7 years or so, we’ve constructed quite a few roads in Michigan that use recycled tire rubber.” The team works with the Michigan Department of Environment, Great Lakes, and Energy (EGLE) and the EGLE Scrap Tire division, plus road commissions in Dickinson County, Kent County, St. Clair County, Clare County, and Bay County.

“Teaching provides me with broad dimensions to sharpen my research vision, while research helps me develop in-depth understanding so that I can teach better,” Dr. You says.

Another material You and his team employ: pavement rubble. “More than 94% of the roads in the United States are paved with asphalt mix—about 360 million tons each year. In turn, that generates over 60 million tons of old asphalt pavement waste and rubble,” he notes. Recycling these waste materials not only greatly reduces the consumption of neat asphalt mix, it also lowers related environmental pollution, he adds. 

Blending recycled asphalt pavement (RAP) with fresh asphalt mix has presented several challenges for You and his team. “One noticeable issue of using RAP in asphalt pavement is the relatively weaker bond between the RAP and neat asphalt, which may cause moisture susceptibility,” he says. “We have determined that modifying the asphalt mix procedure and selecting the correct neat asphalt can effectively address this concern.” 

Before the recycled asphalt-tire-gravel mix ever makes it outside, You and his research team do plenty of work indoors, using computer modeling and lab tests to make sure they put viable material out in the elements. 

“When crumb rubber is blended into an asphalt binder, the stiffness of the asphalt binder is increased,” You explains. “ A higher mixing temperature is needed to preserve the flowability of asphalt binder. Conventional hot-mix asphalt uses a lot of energy and releases a lot of fumes. To solve this problem we developed a warm mix technology, a foaming process at lower temperatures, that requires less energy and reduces greenhouse gas emissions.” 

You and his group developed and tested several foaming technologies for warm mix asphalt, integrating state-of-the-art rheological and accelerated aging tests, thermodynamics, poromechanics, chemical changes and multi-scale modeling to identify the physical and mechanical properties of foamed asphalt materials. 

You has other solutions in the works, too, including man-made asphalt derived from biomass. “We tried using bio oil (derived from biomass) in asphalt and found it also improved pavement performance,” he says. 

Not even the pandemic can stop the construction of recycled roads in Michigan!
A Michigan Tech research team of students led by Zhanping You tests a new, cooler way to make rubberized asphalt in Michigan’s Upper Peninsula.

“Asphalt made from bio oil can potentially reduce the consumption of petroleum asphalt and lower the production temperature while road rutting resistance can be improved. We actively work with local, state, and national recycling efforts to develop better road materials, using plastics, waste glass, and several other recyclables, too,” he notes. “We hope our efforts will contribute to a circular and low-carbon economy.”

Prof. You, how did you first get into engineering? What sparked your interest?

I got into civil engineering accidentally, but started to love it. When I was little, I had debates with my friends on the possible damage on roads–was it the load or the pressure from the tires?

Hometown, family?

I view Houghton as my hometown now since I have been here almost 17 years, even though I was born and raised in Northwest China.

A lot of testing goes on in Dr. You’s lab at Michigan Tech.

What do you like to do in your spare time?

I love to read books—non-engineering, engineering, history, and literature. I’m also a recently appointed coadvisor to the Michigan Tech student chapter of Society of Asian Scientists and Engineers (SASE). After years of service in various professional groups at Michigan Tech, I believe an organization of Asian students involved in science and engineering is really needed.

Kobe, how did you first get into engineering? What sparked your interest?

Says Kobe: “Dr. You’s humor, lifestyle, rigorous academic attitude, and profound understanding of sustainable pavement all impact me a lot.”

The first time I got interested in engineering was when they were paving the concrete road in my hometown. I became interested in how and why a mix of some aggregate, sand, and water could create such a hard road.

Hometown, family?

My hometown is a small county in Henan Province, China. I have two sisters and I love my family.

Any hobbies? Pets? 

I like cats and basketball (I go by Kobe in honor of my favorite basketball player). I read science fiction books during my spare time.

Read More

Q&A with Research Award Winner Zhanping You
When Rubber Becomes the Road

Kobe enjoys the Houghton Waterfront Park near campus (even in the middle of winter!)

Michigan Tech Alumna Sarah Rajala Elected to the National Academy of Engineering

Dr. Sarah Rajala

Sarah A. Rajala ’74, a Michigan Tech electrical engineering alumna, has been elected to the National Academy of Engineering. It is one of the highest professional distinctions accorded to an engineer. Dr. Rajala is honored for “innovations in engineering education: outcomes assessment, greater participation and retention of women in engineering, and an enhanced global community.” New members of the NAE will be formally inducted in October at the NAE’s annual meeting.

Rajala is an internationally-known leader in the field of engineering education and a ground breaker for women in engineering. She serves as a role model for young women and is passionate about diversity of thought and culture, especially in a college environment.

Originally from the Upper Peninsula of Michigan (Skandia), Rajala earned her bachelor’s degree in electrical engineering at Michigan Tech. She went on to earn masters and doctoral degrees at Rice University, and then embarked on primarily an academic career, working as a faculty member at North Carolina State University, Purdue University, and ultimately Iowa State University, where she served the engineering profession in a leadership role as the Dean of the College of Engineering until her recent retirement.

Rajala’s extensive professional leadership in the field of engineering education has included serving as president of the American Society for Engineering Education and chair of the Global Engineering Deans Council.

Across her career, in addition to working in a scholarly and teaching capacity as a professor of electrical engineering, Dr. Rajala also provided volunteer service in many professional and leadership roles. Her service roles to the societies for which she contributed culminated in important national leadership positions. These include serving as chair of the Engineering Accreditation Commission of ABET, the engineering accreditation body for engineering programs, and also as president of the American Society of Engineering Education (ASEE). 

At Michigan Tech, Rajala is a member of the Electrical Engineering Academy, inaugural recipient of the Academy for Engineering Education Leadership, and a member of the President’s Council of Alumnae, among many other honors. 

“Dr. Rajala has been an influential person to many people across her career, including me. I am incredibly proud to hear of Dr. Rajala’s election into the National Academy of Engineering,” said Dean Janet Callahan.

“I first met Sarah many years ago at the annual meeting of the American Society for Engineering Education. Later, she reached out to me when she heard I had joined Michigan Tech as the College of Engineering’s next dean. She told me, ‘You will love Michigan Tech—it is a supportive community that truly fosters the principle of tenacity.’”

Now an Iowa State professor emeritus of electrical and computer engineering, Rajala continues to be an internationally known leader in engineering. She is a fellow of the American Association for the Advancement of Science, ABET, the American Society for Engineering Education (ASEE) and the Institute of Electrical and Electronic Engineers (IEEE). Rajala has also received numerous other top awards including national engineer of the year award by the American Association of Engineering Societies and the national Harriett B. Rigas Award from the IEEE honoring outstanding female faculty.

Read more

An Interview with Dr. Sarah Rajala

To Learn From and Celebrate: Academy for Engineering Education Leadership Established

Watch

Among her many honors, Dr. Sarah Rajala received the ABET Fellow Award in 2016. This video, created by ABET in her honor, details Dr. Rajala’s inspiring accomplishments.

Michigan Tech Alumnus Dr. Teik C. Lim Named President of NJIT

Dr. Teik Lim came to Michigan Tech on a scholarship in 1983, and graduated with a BS in Mechanical Engineering in 1985.

The Board of Trustees of New Jersey Institute of Technology (NJIT) recently announced the appointment of Dr. Teik C. Lim as NJIT’s ninth president, following a national search and a unanimous vote of the Board on January 5, 2022. 

President-elect Lim, who also will be appointed as a distinguished professor of mechanical engineering, will begin his NJIT tenure on July 1, 2022. He is the university’s ninth president. He earned his bachelor’s degree in mechanical engineering from Michigan Technological University, and later earned a master’s degree in mechanical engineering from the University of Missouri-Rolla and a doctoral degree from Ohio State University.

Lim presently serves as the interim president of the University of Texas at Arlington (UTA), where he also holds the rank of professor within the Department of Mechanical and Aerospace Engineering. 

“Michigan Tech is very proud of Dr. Lim’s accomplishments, and for his appointment as President of NJIT,”  said Dean Janet Callahan. “We are very proud to have been part of his academic training. Michigan Tech is known for developing leaders—what they learn here starts them on the path to the leaders they become.”

Originally from Malaysia, Lim came to Michigan Tech on a scholarship in 1983 and graduated with a BS in Mechanical Engineering in 1985.

“I grew up with limited means, supported myself through college, and became the first member of my family to earn a college degree,” Lim recalls in a recent NJIT video. “I was able to come to the United States because of a generous undergraduate scholarship from Michigan Tech.”

William Predebon, chair of the Department of Mechanical Engineering-Engineering Mechanics at Michigan Tech, taught Lim in class. “He was an excellent student,” said Predebon. “Dr. Lim’s career is very impressive. His appointment is yet another example of the impact he is having in higher education. I am very proud of his accomplishments, as is all of Michigan Tech.” 

“I will never forget Dr. Predebon’s excellent teaching style—concise, clear, and very easy to follow,” notes Lim. “I learned to mimic him from memory when I first became a professor. Michigan Tech is where I started and Michigan Tech gave me a chance of a lifetime.”

Prior to assuming the interim presidency at UTA, Lim served as the university’s provost and vice president for academic affairs from 2017 to 2020. He also spent approximately 15 years at the University of Cincinnati, where he held both academic and administrative appointments, the last of which was as dean of the College of Engineering and Applied Science.

“I am an engineer and attended polytechnic universities for my bachelor’s and master’s degrees, so coming to NJIT brings me back to my roots,” said Lim. “The chance to lead NJIT’s continuing growth into a preeminent public polytechnic research university is very appealing to me, as is the opportunity to work with the talented faculty, staff, and students, many of whom are, like me, the first from their family to attend college. NJIT is a beacon of life-changing opportunities.” 

Read more

New Jersey Institute of Technology Names Dr. Teik C. Lim as University’s Ninth President

New NJIT president is first person of color to lead one of state’s most diverse colleges

Brad King: Bite-sized Satellites Changing the World!

The team’s spacecraft, Auris, is a small satellite, a 12U cubesat. Its size in centimeters is just 20 x 20 x 30 (smaller than a typical shoebox). Mass is 20 kg (about 44 pounds). And its mission? Auris will characterize radio frequency (RF) signal emissions. Image credit: Michigan Tech Aerospace Enterprise.

Lyon (Brad) King shares his knowledge on Husky Bites, a free, interactive webinar this Monday, 2/7 at 6 pm. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Dr. Lyon B. King specializes in spacecraft propulsion (and the launching of student careers).

What are you doing for supper this Monday night 2/7 at 6 ET? Grab a bite with Dean Janet Callahan and Brad King, Richard and Elizabeth Henes Professor of Space Systems and leader of Michigan Tech Aerospace—a collection of research, development, and educational labs dedicated to advancing spacecraft technology.

With the launch of the Michigan Tech student-built Oculus satellite in June 2019, Michigan Tech became a spacefaring university. Two more prize-winning satellites, Auris and Stratus, are currently under construction for future launch. Professor L. Brad King will tell us all about these satellites and, more importantly, about the student Aerospace Enterprise team that designs, builds, and operates them.

Nolan Pickett: “Did vacation flights, trips to air shows/space museums, and Space-X livestreams inspire you as well? Well, they definitely inspired me.”

Joining in will be mechanical engineering fourth year undergraduate Nolan Pickett, who handles logistical operations, personnel management, and external communications, and third-year mechanical and electrical engineering major Kyle Bruursema. Kyle is Chief Engineer for the Enterprise. He understands how the satellite works inside-and-out and oversees all technical/engineering decisions made within the team.

As the founder and faculty advisor of Michigan Tech’s Aerospace Enterprise, King empowers undergraduate students to design, build, and fly spacecraft, too. One of the team’s student-built satellites (Oculus) is now in orbit; their second small satellite (Stratus) is due to launch in 2022, and a third (Auris) now in progress.

Forty centimeters? That’s about as wide as a large Domino’s pizza.
Kyle Bruursema: “STEM fields have become the major topic of today’s world. It’s how we reach further, discover new possibilities, and build a brighter future.”

“Small satellites are changing the way humans do business and science in space,” says King. “The cost to build and launch a small satellite is now about the same as the cost to build and launch a software app. With the cost barrier removed, innovative students and start-up companies are building small satellites to provide capabilities that my generation has never even dreamed about. Michigan Tech is on the forefront of this movement.”

“There are so many small imaging satellites orbiting the Earth that soon it will be possible to have a complete inventory of every object on the Earth’s surface that is 40 centimeters or larger—we will have a ‘search bar’ for the Earth,” says King. “There are now more than 2,000 small communications satellites that can provide high-speed wireless internet anywhere on the planet.”

In addition to students in the Aerospace Enterprise, King mentors a large team of graduate students in his Ion Space Propulsion Lab at Michigan Tech. There, teams develop next-generation plasma thrusters for spacecraft. King is also a co-founder and CEO of a fast-growing satellite development company, Orbion Space Technology.

It’s “Inevitable”: During Husky Bites, Dr. King will explain why he chose this name for his 70-year old wooden boat.

Dr. King, why did you first choose engineering?

I have always been interested in and fascinated by space and have also loved building things. Aerospace engineering allows me to build things that go into space–the best of both worlds.

Hometown, family?

I was born and raised in Calumet, Michigan, which is about 10 miles north of Houghton. Yes – there is civilization north of Houghton.

Any hobbies? What do you like to do for fun?

Over the past few years I have restored a classic 70-year-old wooden boat. In all my spare time I am either working on the boat (constantly) to get ready for summer, or cruising Lake Superior and Isle Royale, where I spend summer days at remote docks working on my boat.

Nolan, how did you first get into engineering? What sparked your interest?

I first developed a strong interest in STEM through high school AP classes, and grew passionate about science and math. Engineering allowed me to apply the science and math concepts to real-life problems! This decision was further solidified after taking classes at Michigan Tech, doing internships around the Midwest, and spending time as a member of the Aerospace Enterprise (of course)!

Oculus, the Michigan Tech Aerospace Enterprise team’s first nanosatellite, was launched in June 2019. It now serves an imaging target for ground-based cameras for the Department of Defense.About the size of a mini-fridge, Oculus is visible here in the SpaceX rocket payload Can you spot it?

Hometown, family?

My family (four of us) is originally from Hopkins, Michigan. My father is an MTU alum.

Any hobbies?

My strongest passions are snowboarding and mountain biking. These were further amplified after moving to the beautiful Keweenaw Peninsula! I’m also an avid music lover and enjoy getting to know my fellow Enterprise members.

Kyle, how did you first get into engineering? What sparked your interest?

STEM fields have become the major topic of today’s world. It’s how we reach further, discover new possibilities, and build a brighter future. Personally, I have always had an admiration for creating solutions to the world’s challenges and I have always had a love for space, so engineering was a great way to combine the two!

Michigan Tech’s Aerospace Enterprise Team

Hometown, family?

My family originates from Holland, Michigan! Both of my uncles have attended MTU.

Any hobbies?

In my spare time, I love to run and go snowmobiling. Gaming is also a major part of my life.


Read more:

And Then There Were Three: Oculus, Auris–and now Stratus
Enterprise at MTU Launches Spacecraft–and Careers
Michigan Tech’s Pipeline to Space
Mission(s) Accomplished!
Auris Wins! Michigan Tech is Launching Into Space—with Ears

Support the team:

Get Stratus to Space

Watch:

Play Stratus Assembly video
Preview image for Stratus Assembly video

Stratus Assembly

A quick render of the Stratus model assembly. Credit: Michigan Tech Aerospace Enterprise

Calling All Adventurous STEM Undergrads: What Are You Doing This Summer?

TECH SCEnE is short for Technology, Science and Community Engagement in Engineering. It’s a Summer Research Experience for Undergraduates, funded by the National Science Foundation.

Are you a college student—tribal college, community college or university student—who wants to see your contributions make an impact?

Want to be part of a program structured to apply science and technology to benefit the community? 

How about a truly great way to spend eight weeks in Michigan’s beautiful Upper Peninsula this summer, expenses paid, along with a generous stipend of $4,800?

Check out the full details at mtu.edu/techscene. Then, be sure to apply by March 1, 2022.

Join us in Michigan’s gorgeous Upper Penninsula for TECH SCEnE, a Summer Research Experience for Undergraduates, funded by National Science Foundation (NSF).

TECH SCEnE is a program that combines STEM and engineering research with direct community involvement and impact. Stay on campus at Michigan Technological University. Go on amazing outdoor trips guided by the Keweenaw Bay Indian Community KBIC Natural Resources Department. Do hands-on research on campus with your team, right alongside a faculty mentor.

Apply online for free. Women and students from underrepresented backgrounds are all encouraged to apply. Know anyone who might be interested? Please help spread the word!

Find full details about the program, the mentors, and the projects at techscene.mtu.edu

Note: all must apply to TECHSCEnE by March 1, 2022.

2022 Design Expo Registration Now Open

Design Expo

The Enterprise Program and College of Engineering are excited to announce the 22nd Design Expo, being held in person from 10 a.m. to 2 p.m. April 21 in the Van Pelt and Opie Library’s first floor.

Design Expo has been expanded to highlight Senior Design/Capstone projects from all areas of the Michigan Tech campus, involving teams from the College of Business, College of Forest Resources and Environmental Science and College of Engineering. 

RSVP for Design Expo Today!

The Michigan Tech community, friends and sponsors are invited to register for this year’s Design Expo.

More than a thousand students in the Enterprise and Senior/Capstone Design programs will come together to showcase their work and compete for awards. In addition, a panel of judges, made up of distinguished corporate representatives, alumni, community members, and Michigan Tech staff and faculty, will be able to critique videos of team projects, solutions and results in advance of the live event, then come to Design Expo to meet the teams and ask any questions in person.

Social Hour and Awards Ceremony

Starting at 2:30 p.m., all student teams, judges, sponsors and friends, and the Michigan Tech campus community are invited to a social hour at the Rozsa Center for the Performing Arts with light refreshments, entertainment and door prizes. Then, at 3:30 p.m., we will begin the Design Expo Awards Ceremony, where student teams will be recognized and more than $3,000 in cash will be awarded.

Both events are free and open to the public. We encourage current and future students, faculty, staff, parents, alumni, families of students, and others to help us celebrate our students and their achievements. Register today to see a schedule of events and attend the 2022 Design Expo.

Become a Judge

Are you interested in judging for the 22nd annual Design Expo? We welcome all Michigan Tech faculty, graduate students, staff, alumni, industry representatives and community members interested in the great work of our students! Find out more at our Become a Judge web page.

This year, judges will have the flexibility to evaluate team videos anytime between noon April 18 and 2 p.m. April 21. Judges will be assigned three to five teams, and will evaluate each team’s video using an electronic ballot. In addition, judges are asked to attend Design Expo in person between 10 a.m. and 2 p.m. April 21 to judge their teams in person. Judges will be selected based on their availability to attend Design Expo in person.

2022 Design Expo Website

For more information on attending and judging Design Expo, visit our website. For questions, please reach out to Briana Tucker at bctucker@mtu.edu.

By The Enterprise Program and College of Engineering.

Dean’s Teaching Showcase: Melanie Watkins

Melanie Watkins
Melanie Watkins

Melanie Watkins, research assistant professor in the Department of Civil, Environmental, and Geospatial Engineering (CEGE), has been selected for this spring’s Deans’ Teaching Showcase.

Watkins will be recognized at an end-of-term luncheon with other spring showcase members, and is a candidate for this summer’s CTL Instructional Award Series.

“This nomination highlights a faculty member who is incorporating Fourth Industrial Revolution concepts into the curriculum so that our graduates will be leaders in their future jobs,” states College of Engineering Dean Janet Callahan. “Dr. Watkins is integrating new concepts and skills into course learning outcomes and also developing new courses as industry aligns with digital and computing competencies.”

Watkins models the importance of lifelong learning. Her industrial experiences taught her to master new approaches and modeling tools to maintain a competitive advantage against other engineering consulting firms. Now in academia, she has completed multiple computing and data science courses, and remains thirsty to learn more.

Watkins used the skills she gained to design a new course first offered in spring 2021: CEE 4610/5610 Water Resources System Modeling and Design.

The course incorporates 2D hydraulic modeling with lidar data, Linux scripting, and OpenFOAM computational fluid dynamics. Additionally, Watkins included 2D modeling using lidar and computer programming in CEE 4620 River and Floodplain Hydraulics to extend student preparedness.

Watkins’ teaching approach ties the knowledge and skills students need to be successful into project-based instruction. In fall 2021’s CEE 4620, Watkins had students model and design a culvert for U.S. Highway 41 at Peepsock Creek, west of Pilgrim River, after the Michigan Department of Transportation gave a guest presentation overviewing the damage from the Father’s Day Flood. 

Former student Jenna Koenig says the Hydraulic Engineering Center’s River Analysis System and Aquaveo materials she encountered in Watkins’ class are giving her an edge.

“I have been in a unique position at my current job because I have quite a bit of experience in these areas where many of my colleagues don’t,” Koenig says. “Dr. Watkins did an amazing job with these courses and with Senior Design. I’m very prepared to tackle almost anything on any project I’ve been put on; it is a great feeling! The first couple of months have been a pretty steep learning curve, but it’s been a great experience so far. I’m thankful for her help in preparing me in a great way!”

Watkins’ efforts to keep pace with the changes in industry also make her a strong graduate student recruiter. “Melanie provides a positive impression on our junior and senior students, and she is a convincing salesperson,” says Audra Morse, chair of CEGE. “Our students want to keep their Michigan Tech connection after they complete their undergraduate degree.”

“The Water Resources Modeling Certificate, which Melanie led, is one of our most popular online certificates,” Morse adds.

“Dr. Watkins’ passion for learning permeates everything she does, and I commend her for her work in support of integrating the Fourth Industrial Revolution into the undergraduate curriculum,” concludes Callahan.

By the Center for Teaching and Learning.