Category: News

Shiliang Wu on Air Quality in Detroit

Shiliang Wu
Shiliang Wu

Shiliang Wu (GMES/CEGE) was quoted by Planet Detroit in a story explaining how a winter atmospheric inversion lowered air quality January 7-8, 2024, in Detroit. Wu co-authored a 2016 study that found a 50% increase over the last 60 years in the frequency of winter atmospheric inversions and summer heatwaves, which can both increase air pollution. The story was picked up by Great Lakes Now.

“For the last at least 60 years we have data for, we can clearly see a trend of increasing temperature inversions in mid-latitude regions.”

Shiliang Wu, professor at Michigan Tech

Wu is a dual-appointment professor in Geological and Mining Engineering and Sciences and Civil, Environmental, and Geospatial Engineering. His research involves impacts of global change on atmospheric chemistry and long-range transport of air pollution.

Simon Carn on the Eruption from a Fissure on the Reykjanes Peninsula

Pair of color maps of the peninsula, with a bright region in the right map.
Reykjanes Peninsula on December 18, 2023 (left) and December 19, 2023 (right). Visit NASA Earth Observatory for legend and labels.

Simon Carn (GMES) was quoted by NASA’s Earth Observatory in a story about the eruption of lava from a new fissure on Iceland’s Reykjanes Peninsula, which began late on Dec. 18. Carn interpreted a brightness temperature image comparison of the eruption area between Dec. 18 and 19, and commented on the reported risk to nearby infrastructure.

“If lava continues to flow north, it could eventually reach the key main road from Keflavík airport to Reykjavík.”

Simon Carn, professor in Geological and Mining Engineering and Sciences

Carn’s current research focus is the application of remote sensing data to studies of volcanic degassing, volcanic eruption clouds, and anthropogenic pollution.

GMES Awards Seven Degrees in Fall 2023 Commencement Ceremony

The Department of Geological and Mining Engineering and Sciences is pleased to award five bachelor’s, and two master’s degrees this December.

Two graduate degrees awarded:
Breen, Dillon MS Geology
Advised by Dr. Luke Bowman
Metts, Isabella MS Geophysics
Advised by Dr. Greg Waite

Five undergraduate degrees awarded:
Hawes, Jack W. BS Geological Engineering
Johnson, Samuel A. BS Geology
McClelland, Elliz E. BS Geology
Myaard, John S. BS Geological Engineering
Verran, Maria E. BS Mining Engineering

Congratulations, and best of luck on all future endeavors!

John Myaard, Elliz McClelland, Samuel Johnson, Maria Verran, and GMES Department Chair Aleksey Smirnov.

Elliz McClelland Interns for EarthScope and Presents at the American Geophysical Union Annual Meeting

This summer, Elliz McClelland interned in the URISE (Undergraduate Research Internships in Seismology) program, funded by EarthScope (formerly known as IRIS). This internship experience gave them professional research experience, guidance about graduate schools, and the opportunity to work with an institution they’d like to work at during their career. As part of their internship experience, they will also present at the annual national American Geophysical Union (AGU) meeting in December 2023, a completely new experience for them.

During Elliz’s internship, they conducted research into a volcanic caldera using geophysics in New Mexico. Elliz worked under the mentorship of the United States Geological Survey and spent part of their summer working in the USGS office in Denver, Colorado. This internship was a multi-faceted experience where they had the opportunity to do a lot of traveling. Elliz spent their first couple of weeks performing fieldwork in New Mexico in their study area, then moved into Denver to work at the USGS office. They were also lucky enough to work on a separate USGS project where they traveled to Hawaii to help their mentor conduct field research. Their summer was full of new experiences and cultures!

Elliz preparing to get on a helicopter for field work in Hawaii.

The URISE internship was highly targeted toward providing research experience and preparation for graduate school. While Elliz intends on taking a least one gap year before attending graduate school, the information the internship coordinators provided them about graduate school was instrumental in making their decisions about furthering their education. 

When reflecting on the value of the URISE internship, Elliz says, “For my needs, this internship was also immensely useful in determining my career path. I ‘put my boots on the ground’, so to speak, working directly with the USGS under a position I might like to hold myself in the future. My summer experience really confirmed for me that I love doing field work and I would enjoy working for an institution like the USGS.”

In December, Elliz presented their work at the AGU national conference in San Francisco, California. This conference is one of the biggest Earth Science conferences in the nation and is an excellent opportunity for students to meet potential employers, experience the professional research conference environment, and network with fellow geoscientists. For more details about Elliz’s internship experience and the research they conducted, you can visit their summer blog at URISE. Elliz would also like to highly recommend this internship to any geoscience students with an interest in research and geophysics. Anybody can apply and prior geophysics experience is not required! You can stay updated about internship applications at URISE.

Elliz and their USGS mentor Paul setting up a field station in New Mexico.

Murchek Successfully Defends Geophysics Ph.D. Research Proposal

Jacob T. Murchek presented his doctoral research proposal defense on Friday, December 1, 2023. Advised by Dr. James DeGraff, with Dr. Benjamin Drenth, Dr. Jeremy Shannon, and Dr. Aleksey Smirnov serving as committee members. 

Murchek pictured collecting geophysical data across the Keweenaw Fault using the Lacoste Romberg Model G Gravity Meter and the Trimble differential GPS unit to create better constrained models of the subsurface geology crucial to refine the history of the Midcontinent Rift System and copper mineralization.

Title: Integration of Geophysical Data with Geologic Constraints to Infer Tectonomagmatic Controls on Mineral Systems in the Yukon-Tanana Uplands, Alaska, and Keweenaw Peninsula, Michigan

Abstract: Critical minerals are necessary for the everyday needs of modern human society and are paramount for the advancement of technology. Lithium, cobalt, nickel, and graphite are some examples of critical minerals used in cell phones, military equipment, vehicles, batteries, and other essential products. To increase domestic production of critical minerals, the U.S. Geological Survey (USGS) seeks to identify areas favorable to host deposits of such minerals through the Earth Mapping Resources Initiative. In collaboration with the USGS, the proposed research aims to identify tectonomagmatic controls of mineral systems in the Yukon-Tanana Uplands (YTU), Alaska, and along the Keweenaw Peninsula (KP), Michigan, using geophysical and geologic data to better understand the distribution and origin of such systems and to judge critical mineral potential in the two areas.

Both the YTU and KP have the potential to host critical mineral deposits, however, mineral systems in these areas are not completely understood. Critical minerals in the YTU are most likely to occur as secondary minerals associated with precious metal mineral systems. Aeromagnetic data will be interpreted, modeled, and integrated with regional geology, magnetic susceptibility measurements, and geochemical data to aid in delineating the boundary between the parautochthonous North American Basement (NAb) and allochthonous Yukon-Tanana Terrane (YTT) that underlie the YTU. Establishing a firm boundary for these terranes has major implications for understanding the origin and distribution of mineral systems across the YTU (e.g., porphyry Cu-Au, orogenic Au) and, consequently, the potential for such systems to host critical minerals. The research will emphasize developing geophysically mappable criteria for these and other mineral systems and the plutonic suites that may be associated with their deposition and enrichment. Along the KP copper district and its southwest extension, gravity and magnetic data, and possibly seismic reflection data, will be acquired to model the structure of the Midcontinent Rift System (MRS), thereby testing published cross-sectional models for the rift and the Keweenaw fault system (KFS). Better definition of the KFS is relevant to understanding migration pathways of copper-bearing hydrothermal fluids that produced economic deposits of copper and silver in the region. Quantitative geophysical modeling in the region can be tightly constrained by bedrock outcrops and rock property measurements (e.g., density, magnetic susceptibility). A better constrained subsurface model across the southeast margin of the MRS will establish a stronger tie to offshore geophysical data previously collected across Lake Superior. Such models should also improve the definition of known faults in the KFS as well as identify new faults beneath Jacobsville Sandstone, thus helping to infer mineralization pathways for copper and other elements associated with the MRS.

GMES Alumni Social at the 2024 SME Annual Conference

row of students standing in front of Caledonia mine entrance
Join us for an alumni social in Phoenix!

You are invited! The Department of Geological and Mining Engineering and Sciences (GMES) is hosting an alumni social in conjunction with the MineXchange 2024 SME Annual Conference in Phoenix, AZ, from 5:30-7:30 PM on Tuesday, February 27, 2024, at the Sheraton Phoenix Downtown.

Plan to attend and network with MTU alumni from all facets of the SME community, plus take the time to meet the newest huskies as they embark on their professional careers in the industry.

Michigan Tech’s AggCelerate team, advised by Dr. Manser, has advanced to the top six nationally in the SME/NSSGA Student Design Competition. The second phase of the competition will take place during the SME Conference.

Michigan Tech will be competing against runner-up teams from the University of Kentucky, Virginia Tech, University of Arizona, West Virginia University, and Missouri University of Science and Technology. Student teams will have one weekend to solve a design problem and present their findings to a panel of judges. The competition is designed to simulate an engineering project prepared by an engineering group for a company.

Michigan Tech team members, listed in alphabetical order, are:

  • Cassie Burch (Junior, Geological Engineering)
  • Aiden Harmon (Junior, Mining Engineering)
  • Lucas Maxon (Sophomore, Mining Engineering)
  • Ian Repic (Senior, Mining Engineering)
  • Nathan Seidel (Senior, Mining Engineering)
  • Grady Williams (Junior, Mining Engineering)

Event and Student Travel sponsorship opportunities are available at this time for 2024 in Phoenix and 2025 in Denver; please contact Nathan Manser (ndmanser@mtu.edu) for more details.

Photo: MTU participating at the 2023 MineXchange in Denver. 

Braxton Murphy Receives Research Fund from the Institute on Lake Superior Geology

Each year the Institute on Lake Superior Geology (ILSG) offers competitive funding for student research projects that focus on the geology of the Lake Superior region. This year, Braxton Murphy, a senior in geological engineering, was awarded $500 to support his project titled “Determine the Relative Paleostress State and Tectonic Conditions That Resulted in Formation and Movement of Faults of the Keweenaw Fault System near Houghton, Michigan.”

Braxton’s research with Jim DeGraff involves measuring slip indicators along the Hancock fault where it is exposed in the Quincy Mine workings and at a rock quarry near the town of South Range. These data will be analyzed to infer the paleostress state that caused faults in the Keweenaw fault system to move, thus allowing different ideas about the Midcontinent Rift System to be evaluated. Research activities in fall 2023 focused on the Hancock fault, and next year will focus on the South Range quarry.

Research findings will be presented at the 70th annual ILSG meeting to be held at Michigan Tech in May 2024.

Letter from the Chair – December 2023

Northern Lights over the snow and ice with students and flashlight in the far right corner of the frame
Aurora Borealis, Waterworks Park, Calumet, Michigan

Dear GMES Alumni and Friends,

When I became the department chair, I stopped using ‘Professor of Geophysics’ in my title and email signature. Instead, I now simply refer to myself as ‘Professor and Chair.’ This change reflects the fact that the success of all our programs and the department as a whole is equally important to me. I aspire to see our four major programs complement each other, combining our traditional strengths while equipping our students with the skills and tools needed for success in meeting the challenges of the 21st century.

Aleksey Smirnov, Professor and Chair

Student enrollment remains the first priority for the Department. Currently, our undergraduate cohort is a healthy size, consisting of 73 students split between our four majors: Geology (28), Geological Engineering (23), Mining Engineering (16), and Applied Geophysics (6). Our nearly equal gender parity has consistently been one of the best within Michigan Tech. We currently have 34 MS students and 12 PhD students, with 12 more MS students joining us this spring semester 2024.

Even so, we have the capacity to accommodate still more GMES students and we work hard to bring them to Michigan Tech. Scholarships remain one of the most efficient tools to attract new students.  

We also recently started development of a new articulation agreement with Minnesota North College, just as we did with Northwestern Michigan College last year. These agreements allow community college students to transfer their two-year credits to Michigan Tech and receive their Bachelor’s degree in two years.

Our capable, dedicated, enthusiastic students continue to be very successful in their classes and professional development. Our award-winning student chapter of the American Institute of Professional Geologists attended the AIPG National Conference in Kentucky in September. Student success stories—such as  John Myyard’s and Brendan Harville’s—are always inspiring and rewarding for all us who strive to help students.  

Our alumni community is invaluable to our department’s success. We’ve been delighted to reconnect with many of you at various events, including the GMES social event at the Annual SME Conference and Expo in Denver, and the Michigan Colleges/Universities Joint Alumni Reception at the GSA Annual Meeting in Pittsburgh. We look forward to reconnecting with you at future events, including the upcoming Alumni Reception at the SME MineXchange Conference in Phoenix on Tuesday, February 27, 2024, from 5:30 to 7:30 PM.

In October, it was a pleasure to welcome alumna Mary Herrmann-Foley, who returned to campus as a distinguished guest seminar speaker, sharing insights on the pivotal role of geological engineering in the energy transition. 

With your support, we can enhance our educational offerings, expand scholarship opportunities to benefit more students, and bolster their competitiveness in the job market. Your contributions also provide valuable support for student travel and professional development. For more details on how to make a difference, visit mtu.edu/geo/department/giving, or please feel free to contact me at asmirnov@mtu.edu.

Lastly, we are always glad to hear from you! Please share your thoughts on what and how we can do better, and update us on your own endeavors and achievements. 

Aleksey Smirnov

Summer 2023 Laboratory Updates at GMES: Transforming Learning and Collaboration

Two laboratories at the Department of GMES underwent significant renovations this past summer

1. Upgrading the Mine Design and System Simulation Laboratory 

Thanks to the generous support of our Mining Engineering alumni, we replaced all the computers in our Mine Design and System Simulation Laboratory (Dow 709) with new cutting-edge, powerful computers with advanced mine design, planning, and simulation software packages. At the same time, the laboratory capacity was increased to 15 seats. The MDSS Laboratory supports teaching, senior design, and research activities. The lab is fully equipped with the Sharp AQUOS BOARD Interactive Display System, and advanced audio-video equipment. This lab also includes a smart interactive center room for video conferences and online communications. The MDSS Lab is created to enhance and facilitate the potential of teaching and conducting modern mining projects at Michigan Tech. This upgrade will further enhance collaboration and foster innovation among our students and researchers.

 The Mine Design and System Simulation Lab (Photo by R. Askari)

2. Introducing the Earth Explorers Computer Laboratory: A Multifunctional Hub

We converted the old seismic petrophysics laboratory into the dynamic Earth Explorers Computer Laboratory (EECL). It is a multifunctional space tailored for GMES students tailored for GMES students pursuing their research, coursework, and senior projects. Designed to foster creativity and collaboration, the laboratory is equipped with several high-performance workstations featuring AppsAnywhere technology and proprietary software. Students have access to many specialized applications, data processing tools, modeling software applications, and image processing. The computers in EECL also provide access to Michigan Tech’s high-performance computing cluster. This dynamic space now features a spacious TV screen,  a lectern, and video-conferencing equipment and serves as a geophysics reference library. Additionally, the lab serves as a multi-purpose space, doubling as a classroom for various GMES courses as well as a meeting space for research groups. The room’s ambiance was revitalized with brand-new carpeting and fresh paint, giving it an inviting vibe.

 Earth Explorers Computer Lab (Dow 619) (Photo by R. Askari)

These upgrades enhance the learning and collaboration experience within our department. They ensure more students can access our resources, and provide modern, adaptable spaces for educational and collaborative needs for everyone.

Our heartfelt thanks go to our alumni whose generous donations made these improvements possible. As we embrace the future of learning and research, we are excited about the possibilities these upgrades will bring.

Isabella Metts Geophysics MS Defense

Isabella Metts achieved success in defending her geophysics MS research on November 11, 2023.

Metts pictured with her research poster at AGU.

Advised by Dr. Greg Waite, with Dr. Luke Bowman and Dr. Simon Carn serving as committee members.

Title: An Investigation of Microseismicity During the 2018 Kīlauea Caldera Collapse

Abstract: The 2018 Kīlauea volcano eruption and incremental caldera collapse was accompanied by more than 60,000 seismic events cataloged by the Hawaiian Volcano Observatory as well as 62 caldera collapse events. The majority of seismicity occurred on the eastern side of the caldera between daily collapses. However, the majority of caldera subsidence occurred to the west. To understand the collapse mechanics behind this variance in subsidence and seismicity across the caldera region, repetitive waveforms and source properties can be studied.

Repeating seismic events suggests a common source that is not moving or destroyed. At Kīlauea, clusters of repeating events can indicate source processes throughout collapse cycles. REDPy, a repeating earthquake detector tool for Python, cross-correlates seismic events to determine repetition. Events are separated into families or listed as orphans if no matches are found. We used data from HVO network stations surrounding Kīlauea’s summit. Possible events were identified using an STA/LTA trigger algorithm with a long-time average trigger of 8 seconds, a short-time average trigger of 1 second, and a trigger on/off range of 1-2.5. A minimum correlation coefficient of 0.7 was used to group over 167,000 recognized events from April 29th to August 2nd into nearly 6,000 families. Of these families, 697 were chosen as ‘clusters of interest’ for including >100 events or persisting for 7 days or more. P wave first motions were manually picked for waveforms associated with clusters of interest. These clusters were then located using P wave arrival times, and focal mechanisms were modeled for viable events to learn more about their source processes and relationship to collapse mechanics.

Dilatational first motions dominate our catalog and indicate crack-closing sources with possible relationships to conduit collapse after magma withdrawal and crack closure due to fault motion. Focal mechanism models produced mismatched station polarities indicative of non-double-couple sources, further aiding the hypothesis that dominant events involve a negative volumetric component. Focal spheres show evidence of ring faulting that is likely responsible for these non-double-couple events through the motion of concave fault structures presenting as repetitive crack closure along caldera margins.