Author: Karen Johnson

The Michigan Tech College of Computing offers a full range of undergraduate and graduate degrees in the Computing disciplines.

Tim Havens Named Associate Dean for Research

Timothy C.  Havens, the William and Gloria Jackson Associate Professor of Computer Systems and the director of the Institute of Computing and Cybersystems, has been appointed the associate dean for research for the College of Computing, effective immediately. 

In his new role, Havens will encourage and enable research success in the College and promote collaborative, cross-disciplinary research and learning experiences through research support and development, communication and marketing, advancement, and College strategy and planning.

“Tim is highly passionate about supporting research creativity and pushing the boundaries of computational knowledge.  He also has a strong history of supporting student degree completion and growing Michigan Tech’s reputation,” said Dean Adrienne Minerick, College of Computing. “For these reasons and more, he is an outstanding individual to cultivate and grow the College of Computing via independent research, collaborative research, and large team endeavors.  I am thrilled he has agreed to lead in this exciting new era of computing at Michigan Tech.”

In his new role, Havens will collaborate with faculty and staff in identifying and pursuing research opportunities, lead and assist with College efforts to support and secure large, externally funded research awards, and work closely with the Dean, College leadership, and other constituent groups to advance the College of Computing’s reputation, research capabilities, and impact. Havens will also work to enhance communication and relationships between other units on campus surrounding computing and related research areas and contribute to College teaching needs, among other duties.

Havens’s overarching goals for his new position encompass developing key, sustainable resources to enable research success in the College and Michigan Tech as a whole. This includes recruitment of technical research support, mentoring for new faculty and research staff, continued development of a seminar series for distinguished visitors and rising stars, and growing donor engagement in research activity.

“My long-term goal is to develop a flourishing, sustainable culture of creativity, innovation, and education, where research is the thread of daily eagerness to move the boundaries of knowledge and to solve hard puzzles,” Havens explained. “The product of this culture will be productive, rewarded researchers who exemplify their passion for pushing the envelope to our students, our alumni, and the greater research community.”

Havens knows that this sounds lofty and utopic, but his hope is that someday “we will all turn to each other and say, ahhhhh, this is it! This is inspiring!”

“During his time at Michigan Tech, Tim has proven to be a dedicated and productive researcher and—most importantly—a great collaborator,” said Peter Larson, director of research development at Michigan Tech. “It has been a pleasure to work alongside Tim this academic year in the ICC. I am confident that his leadership will be a great asset to both ICC and the College of Computing in the coming years. Tim’s collaborative nature will be instrumental in bringing teams together as we seek to expand the portfolio of computing research at Michigan Tech across new programs, new areas of research, new sponsors, and larger projects.”

Havens has a passion both for academic research and innovation, and also for mentoring. This is why he loves being a professor, where he can do both. “I really look forward to working with all the College researchers—it’s a unique opportunity to both act as a mentor to our researchers, and also to continue my own learning experience. I’m especially eager to learn more about all the great research going on in the College and at Tech, and to help our researchers accomplish their research goals,” Havens said.

“Those who know me well, know that I also like to put on a show. I view part of being an Associate Dean as exactly that—I really enjoy telling the stories of the College and our researchers, and cultivating the visibility of our new College. It’s an exciting time to be in computing at Michigan Tech.”

Havens considers himself fortunate to have to have worked with several talented research mentors in his career path, starting with his experience as a master’s student at Michigan Tech, where he investigated the optical properties of the atmosphere with his M.S. advisor, Michigan Tech professor Dr. Mike Roggemann.

Havens first job following completion of his M.S. was at MIT Lincoln Laboratory, where he investigated adaptive optics systems in support of the Airborne Laser program. Following that experience, he knew he wanted to be an academic researcher and a professor, so he returned to school to complete his Ph.D. at University of Missouri with advisor Dr. Jim Keller.

“Dr. Keller is a consummate researcher and one can’t help but to catch the research bug working with him. He was and continues to be a great mentor; he made sure that I received lots of practice writing papers and proposals, talking to program managers, strategizing research projects, collaborating outside my field, all important aspects of running a research program,” Havens said.

Havens notes that the duties of his latest gig, as director of the Institute of Computing and Cybersystems (ICC), are very similar to those of the Associate Dean for Research. 

“The ICC is very much a part of the strategic vision for research in the College of Computing, as the institute acts as the research arm of the College. This integration allows us to best utilize the finite resources of both the College of Computing and the ICC to get the greatest return on key investments in people and resources,” Havens explained.

“Launching the new College has been a wild experience so far and such a fantastic opportunity,” Havens said. “With this shift, we boldly announce that computing is a major field of study and not just an underpinning to other disciplines. I see the new College as a place of opportunity to experiment, collaborate, develop new pedagogies, and become a model for other institutions of higher learning. Our team is strong and creative, and it’s fun working on this puzzle with them.”

ICC Institute Mixer, Friday, January 24, 3-5 pm

The Institute for Computing and Cybersystems (ICC) and ICC Director Tim Havens cordially invite members of the Health Research Institute (HRI) and the Institute for Policy, Ethics, and Culture (IPEC) to an ICC Institute Mixer on Friday, January 24, 2020, from 3:00 to 5:00 p.m. in Rekhi 214. Please join us to learn more about the ICC, network with our member researchers, and share information about your research institute. Refreshments will be served.

Tim Havens Receives $120K Award from Signature Research, Inc.

Timothy Havens

Tim Havens, College of Computing associate dean for research, has been awarded an 18-month, $120,000 grant by Signature Research, Inc. The project, “Machine Learning for Human-Based Visual Detection Metrics,” contributes to an effort to develop a methodology that predicts the impact to human vision due to the existence of atmospheric particles. Havens is also the director of the Institute of Computing and Cybersystems and the William and Gloria Jackson Associate Professor of Computer Systems.

Abstract: This project contributes to an effort to develop a methodology that predicts the impact to human vision due to the existence of atmospheric particles. Due to the variability of atmospheric conditions and particulate matter (dust, ice, etc.) extensive field test campaigns to characterize the impacts to human vision are impractical. As a result, a model-based approach must be developed in order to evaluate all possible conditions in a virtual environment. It is envisioned that this approach will incorporate both human in-the-loop evaluations as well as generation of machine learning algorithms to serve as an in-situ human observer.

Signature Research, Inc. provides solutions to DoD and the Intelligence Community, specializing in Signature Phenomenology, Analysis, and Modeling of items of military interest covering the breadth of the electromagnetic spectrum. Signature Research, Inc. engineers and scientists have developed methodologies, tools and products to help visualize and interpret electromagnetic signatures, and Signature Research, Inc. staff are recognized experts within the various communities in which they work. SGR’s corporate headquarters is located in Calumet, Michigan, with a second operating location in Navarre, Florida near Eglin Air Force Base and Hurlburt Field. http://signatureresearchinc.com

Samantha Smith to Present Talk for ACSHF Forum

The first Applied Cognitive Science and Human Factors (ACSHF) Forum of the Spring 2020 semester will be held from 2 to 3 p.m. Monday (Jan. 13) in Meese 109. Samantha Smith (CLS), will present “The Relationship between Cerebral Hemovelocity and Vigilance: Sample versus Individual Outcomes, and Future Directions.”

High workload, stress, and fatigue may negatively impact operator performance in critical roles. A means to monitor ongoing performance would be useful to intercede when deficits are detected, but it is not often possible to detect these deficits in real-world tasks, in real-time. However, it has shown that cerebral blood flow velocity (CBFV), a measure of changes in cognitive metabolic activity, declines alongside performance in sustained attention tasks. Thus, CBFV has been proposed as a potential way to monitor operators for indirect insight into cognitive state and performance.

This presentation will discuss a recent study exploring the relationship between CBFV and vigilance performance at the sample versus individual level and will propose the use of Recurrence Quantification Analysis to further explore the complex relationship between psychophysiological metrics and cognitive performance over time.

Soner Onder and Dave Whalley Investigate Instruction-level Parallelism

From Florida State University News

A Florida State University researcher is working to make computer processors execute applications in a more energy-efficient manner with the help of a new $1.2 million grant from the National Science Foundation.

Professor Dave Whalley, Florida State University

“The general goal is to increase performance but to do it in a manner that is more energy efficient than the dominant computer processors that are in use today,” Professor of Computer Science David Whalley said.

To do that, Whalley and his colleague Soner Onder, a professor at Michigan Technological University, hope to more efficiently exploit what’s called instruction-level parallelism, or the ability of a computer to simultaneously execute multiple machine instructions.

Professor Soner Onder, Michigan Tech Department of Computer Science
Professor Soner Onder, Michigan Tech Department of Computer Science

“In general, VLIW processors are more energy efficient but cannot approach the performance of OoO processors except in limited domains, such as digital signal processing,” Whalley said.

Whalley’s project, called SCALE for Statically Controlled Asynchronous Lane Execution, is designed to overcome these current limitations. SCALE supports separate execution lanes, so that instructions in separate lanes can execute in parallel and dependencies between instructions in different lanes are identified by the compiler to synchronize these lanes when necessary.

“Providing distinct lanes of instructions allows the compiler to generate code for different modes of execution to adapt to the type of parallelism that is available at each point within an application,” Whalley said.

The grant began this fall and will run through August 2023. Half of the funding will come to Florida State, with the other half supporting Onder’s part of the work at Michigan Technological University. The FSU portion will support two graduate students in computer science.

All Researchers Invited to Research Development Day 2020

by Research Development Office

All Michigan Tech researchers are invited to participate in the 2020 Research Development Day at Michigan Tech. The event will be held Thursday, Jan. 9. The content of the 2020 event is new and designed for both new and returning attendees.

Multiple sessions are planned for faculty at all career stages and from all disciplines. Research staff and post-docs from any discipline are also likely to find sessions of interest. We are excited to welcome Jose Fuentes as our keynote speaker.

Fuentes is an experienced faculty researcher at Penn State, with a significant track record of international work and broad research impact. As in previous years, we will end the day with research recognitions, celebrating accomplishments from across the university over the past year, followed by a networking social.

A condensed agenda is found on the reservation form. Your RSVP is requested by Jan. 3 to finalize meal counts and room arrangements. If your schedule does not permit you to attend the full day, the RSVP allows you to sign up for morning, lunch, and/or afternoon sessions.

The RSVP form should take only a minute or two to complete. A reminder and final agenda will be sent in the new year. Please contact rd-l@mtu.edu with any questions.

Nathir Rawashdeh to Present Paper at Advances in Mechanical Engineering Conference

Nathir Rawashdeh

A conference paper co-authored by Nathir Rawashdeh (CC/MERET), has been accepted for presentation and publication at the 5th International Conference on Advances in Mechanical Engineering, December 17-19, 2019, in Istanbul, Turkey.

The paper is entitled, “Effect of Camera’s Focal Plane Array Fill Factor on Digital Image Correlation Measurement Accuracy.” Co-authors are Ala L. Hijazi of German Jordanian University, and Christian J. Kähler of Universität der Bundeswehr München.

Abstract: The digital image correlation (DIC) method is one of the most widely used non-invasive full-field methods for deformation and strain measurements. It is currently being used in a very wide variety of applications including mechanical engineering, aerospace engineering, structural engineering, manufacturing engineering, material science, non-destructive testing, biomedical and life sciences. There are many factors that affect the DIC measurement accuracy where that includes; the selection of the correlation algorithm and parameters, the camera, the lens, the type and quality of the speckle pattern, the lightening conditions and surrounding environment. Several studies have addressed the different factors influencing the accuracy of DIC measurements and the sources of error. The camera’s focal plane array (FPA) fill factor is one of the parameters for digital cameras, though it is not widely known and usually not reported in specs sheets. The fill factor of an imaging sensor is defined as the ratio of a pixel’s light sensitive area to its total theoretical area. For some types of imaging sensors, the fill factor can theoretically reach 100%. However, for the types of imaging sensors typically used in most digital cameras used in DIC measurements, such as the “interline” charge coupled device CCD and the complementary metal oxide semiconductor (CMOS) imaging sensors, the fill factor is much less than 100%. It is generally believed that the lower fill factor may reduce the accuracy of photogrammetric measurements. But nevertheless, there are no studies addressing the effect of the imaging sensor’s fill factor on DIC measurement accuracy. We report on research aiming to quantify the effect of fill factor on DIC measurements accuracy in terms of displacement error and strain error. We use rigid-body-translation experiments then numerically modify the recorded images to synthesize three different types of images with 1/4 of the original resolution. Each type of the synthesized images has different value of the fill factor; namely 100%, 50% and 25%. By performing DIC analysis with the same parameters on the three different types of synthesized images, the effect of fill factor on measurement accuracy may be realized. Our results show that the FPA’s fill factor can have a significant effect on the accuracy of DIC measurements. This effect is clearly dependent on the type and characteristics of the speckle pattern. The fill factor has a clear effect on measurement error for low contrast speckle patterns and for high contrast speckle patterns (black dots on white background) with small dot size (3 pixels dot diameter). However, when the dot size is large enough (about 7 pixels dot diameter), the fill factor has very minor effect on measurement error. In addition, the results also show that the effect of the fill factor is also dependent on the magnitude of translation between images. For instance, the increase in measurement error resulting from low fill factor can be more significant for subpixel translations than large translations of several pixels.
Request the full paper here.

Congratulations, RedTeam@MTU!

National Cyber League Logo

RedTeam@MTU, one of Michigan Tech’s National Cyber League (NCL) teams, placed 8th out of 689 teams in the recent NCL Fall 2019 cyber competition team game. The team consists of seven College of Computing undergraduate and graduate students: Alexander Larkin, John Claassen, Jack Bergman, Jon Preuth, Trevor Hornsby, Shane Hoppe, and Matthew Chau. In addition, two RedTeam@MTU team members ranked in the top 100 out of 4149 players in the individual game: John Claassen (67th) and Alex Larkin (70th).

“This is a breakthrough since first joining the NCL competition in Fall 2017,” said faculty coach Bo Chen, assistant professor of computer science. “Congratulations to the RedTeam and John Claasen and Alex Larkin!”

Three teams and 21 players from Michigan Tech were involved this season, most of them with the RedTeam@MTU, a student organization which exists to promote a security-driven mindset among the student population, and to provide a community and resource for those wishing to learn more about information security.  The RedTeam is co-advised by Bo Chen and Yu Cai, professor in the College of Computing.

Students from hundreds of U.S. universities participated during the Fall 2019 NCL season, which comprised a week-long Preseason placement game, followed by a weekend Individual Game, and culminating in a weekend Team Game. A total of 689 teams and 4149 players  participated.

In addition, Michigan Tech ranks 11th among the top 100 colleges and universities in the “Team” Cyber Power Rankings, 51st in the Individual Rank, and 23rd in the Participation Rank. The Cyber Power Rankings were created by Cyber Skyline in partnership with the National Cyber League (NCL). The rankings represent the ability of students from these schools to perform real-world cybersecurity tasks on the Cyber Skyline platform, such as identify hackers from forensic data, pentest and audit vulnerable websites, recover from ransomware attacks, and more. Schools are ranked based on their top team performance, their top student’s individual performance, and the aggregate individual performance of their students. View the full ranking list at https://cyberskyline.com/data/power-ranking/fall-2019-national.

Founded in 2011 to provide an ongoing virtual training ground for participants to develop, practice, and validate their cybersecurity skills, the NCL is a defensive and offensive puzzle-based, capture-the-flag style cybersecurity competition. Its virtual training ground helps high school and college students prepare and test themselves against cybersecurity challenges that they will likely face in the workforce. All participants played the games simultaneously during all of the Fall season games.

The NCL challenges are based on the CompTIA Security+™ and EC-Council Certified Ethical Hacker (CEH)™ performance-based exam objectives and include the following content: Open Source Intelligence, Scanning, Enumeration and Exploitation, Password Cracking, Traffic Analysis, Log Analysis, Wireless Security, Cryptography, and Web Application Security. Players of all levels can participate in the NCL games. Through easy, medium and hard challenges, students have multiple opportunities to excel.

Learn more about the NCL at: https://www.nationalcyberleague.org/.

Cyber Skyline Logo

Cyber Skyline is an immersive cloud platform on which to practice, develop, and measure technical cybersecurity skills. It is built for Incident Response Handlers, Security & Network Engineers, SOC Analysts, Software Engineers, Pentesters, and more. Visit the Cyber Skyline website at: https://cyberskyline.com.

BASIC Program Featured on TV 6-WLUC UPSide

Kelly Steelman

Building Adult Skills in Computing, or BASIC, is a program where anyone in the community who has questions about computers, smart phones, or tablets, can receive individual instruction. The BASIC program tutors, all Michigan Tech students, and faculty mentor Kelly Steelman, member of the ICC’s Center for Human-Centered Computing, were featured on the TV6 feature UPsiders on November 25, 2019.

View the video on Facebook here: https://www.facebook.com/uppermichiganssource/videos/2669673899926711/.

More about BASIC:

Since 2011, Michigan Tech students and faculty have been helping Copper Country community members improve their basic computer skills through the free tutoring program Building Adult Skills in Computing (BASIC).

The sessions take place every Saturday morning from 10:00 to 11:00 at the Portage Lake District Library, Houghton, when Michigan Tech classes are in session. Up to 15 tutors are available this semester and all community members are welcome. Computer experience is not necessary and an appointment is not required.

“As the digital revolution continues to transform our society, many older adults and other groups are being left behind,” said Charles Wallace, associate professor of computer science. “Using computers, smartphones and other digital devices remains unfamiliar territory for many and it can be a source of great anxiety.”

Wallace explains that through this free tutoring, the BASIC program aims to overcome this anxiety and build the computer skills and digital literacy needed for participants to effectively operate digital devices and technology and safely find the information they need.

For more information, please contact Charles Wallace (906-487-3431, wallace@mtu.edu) or Kelly Steelman, associate professor of cognitive and learning sciences (906-487-2792, steelman@mtu.edu).

Weihua Zhou is PI on $25K R and D Grant from Tulane University

Weihua Zhou

Weihua Zhou, assistant professor, Health Informatics, and member of the ICC’s Center for Data Sciences, is the principal investigator on a project that has received a $24,497 federal pass-through research and development grant from Tulane University. The project is titled, “Trans-Omics Integration of Multi-Omics Studies for Male Osteoporosis.” This is a 7-1/2 month project.

Abstract: Osteoporosis is the most prevalent metabolic bone disease and it is representative of many diseases typical of aging. While advances in omics technologies,  such as genomics, transcriptomics, proteomics, and epigenomics, have been successful in identifying risk loci for osteoporosis, each technology individually cannot capture the entire biological complexity of osteoporosis. The integration of multiple technologies has emerged as an approach to provide a more comprehensive view of biology and disease. In addition, recent advances in image analysis have enabled the characterization of not only the bone mineral density but also the bone microarchitecture and biomechanical quality with the dual-energy x-ray absorptiometry (DEXA) and quantitative computed tomography (QCT) measurements. The Tulane Center for Bioinformatics and Genomics (CBG), led by Dr. Hong-Wen Deng, has accumulated/is acquiring extensive multi-omics data and DEXA/QCT images through a number of research projects for osteoporosis and other related phenotypes. Tulane CBG is actively seeking collaborations with investigators who have the expertise and experience in integrative multi-omics analysis and advanced image analysis. With this NIH subcontract award (U19AG055373), Tulane CBG will collaborate with Dr. Weihua Zhou and his team on the development and implementation of sophisticated methods for multi-omics analysis and DEXA/QCT image analysis.
Dr. Zhou is looking for volunteer research assistants. Please visit his web pages for more details: https://pages.mtu.edu/~whzhou/, and read this blog post: https://blogs.mtu.edu/computing/2019/12/03/medical-imaging-…earch-assistants/.