Category: Awards

Chee-Wooi Ten Awarded $25K Contract from Protect Our Power

Chee-Wooi Ten, associate professor, Electrical and Computer Engineering, and member of the ICC’s Center for Cyber-Physical Systems, was recently awarded a 6 month, $25K contract from the nonpartisan advisory panel, Protect Our Power. The title of the project is, “Consulting for Utilities on Cyber Risk Management.”

The activities Ten will undertake for the project include identifying security vendors for industrial harden security hardware and software, and conducting a survey of each of the identified security vendors to enumerate their strengths and weaknesses.

Ten will talk with vendors and utilities to understand their needs, identify product niches, and prepare a conclusion report that discusses the pros and cons of each vendor product and how each niche will contribute to general solutions for deploying security solutions for U.S. power utilities.

Project deliverables include a literature review, vendor discovery search, criteria identification and definition, comparative analysis matrix, and best practices conclusion paper.

Protect Our Power is a nonpartisan advisory panel with the single focus of strengthening the nation’s electrical power grid. The panel is composed of experts from industry, the physical and cyber defense communities, and finance and government. Its mission is to build consensus among key stakeholders and public policy influencers to launch a coordinated and adequately funded effort to make the nation’s electric grid and the country’s more than 3,000 utility companies prepared and protected against all cyberthreats.

Guy Hembroff Awarded CCISD Contract for CTE Cybersecurity Course

Guy Hembroff, associate professor, CMH Division, and director of the Health Informatics graduate program and the Institute of Computing and Cybersystem’s Center for Cybersecurity, is the principal investigator on a one-year project that has been awarded a $40,000 contract from the Copper Country Intermediate School District (CCISD). The project is titled “Cybersecurity Course for Career and Technical Education (CTE) Program.”

The CCISD CTE program provides courses and labs to high school-age students from Baraga, Houghton, and Keweenaw counties. It is intended to provide the academic background, technical ability, and work experience that today’s youth will need to succeed in today’s changing job market.

The contract funds instructor time, use of facilities, labs, and equipment, and materials and supplies. Student enrolled in the program meet on Michigan Tech’s campus for two hours per day, Monday through Friday, from September to May. 

The CTE Cybersecurity course covers topics including security architecture, cryptographic systems, security protocols, and security management tools. Students also learn about virus and worm propagation, malicious software scanning, cryptographic tools, intrusion detection, DoS, firewalls, best practices, and policy management.

Learn more about the CCISD CTE program at:

Tim Havens Receives $120K Award from Signature Research, Inc.

Timothy Havens

Tim Havens, College of Computing associate dean for research, has been awarded an 18-month, $120,000 grant by Signature Research, Inc. The project, “Machine Learning for Human-Based Visual Detection Metrics,” contributes to an effort to develop a methodology that predicts the impact to human vision due to the existence of atmospheric particles. Havens is also the director of the Institute of Computing and Cybersystems and the William and Gloria Jackson Associate Professor of Computer Systems.

Abstract: This project contributes to an effort to develop a methodology that predicts the impact to human vision due to the existence of atmospheric particles. Due to the variability of atmospheric conditions and particulate matter (dust, ice, etc.) extensive field test campaigns to characterize the impacts to human vision are impractical. As a result, a model-based approach must be developed in order to evaluate all possible conditions in a virtual environment. It is envisioned that this approach will incorporate both human in-the-loop evaluations as well as generation of machine learning algorithms to serve as an in-situ human observer.

Signature Research, Inc. provides solutions to DoD and the Intelligence Community, specializing in Signature Phenomenology, Analysis, and Modeling of items of military interest covering the breadth of the electromagnetic spectrum. Signature Research, Inc. engineers and scientists have developed methodologies, tools and products to help visualize and interpret electromagnetic signatures, and Signature Research, Inc. staff are recognized experts within the various communities in which they work. SGR’s corporate headquarters is located in Calumet, Michigan, with a second operating location in Navarre, Florida near Eglin Air Force Base and Hurlburt Field.

Congratulations, RedTeam@MTU!

National Cyber League Logo

RedTeam@MTU, one of Michigan Tech’s National Cyber League (NCL) teams, placed 8th out of 689 teams in the recent NCL Fall 2019 cyber competition team game. The team consists of seven College of Computing undergraduate and graduate students: Alexander Larkin, John Claassen, Jack Bergman, Jon Preuth, Trevor Hornsby, Shane Hoppe, and Matthew Chau. In addition, two RedTeam@MTU team members ranked in the top 100 out of 4149 players in the individual game: John Claassen (67th) and Alex Larkin (70th).

“This is a breakthrough since first joining the NCL competition in Fall 2017,” said faculty coach Bo Chen, assistant professor of computer science. “Congratulations to the RedTeam and John Claasen and Alex Larkin!”

Three teams and 21 players from Michigan Tech were involved this season, most of them with the RedTeam@MTU, a student organization which exists to promote a security-driven mindset among the student population, and to provide a community and resource for those wishing to learn more about information security.  The RedTeam is co-advised by Bo Chen and Yu Cai, professor in the College of Computing.

Students from hundreds of U.S. universities participated during the Fall 2019 NCL season, which comprised a week-long Preseason placement game, followed by a weekend Individual Game, and culminating in a weekend Team Game. A total of 689 teams and 4149 players  participated.

In addition, Michigan Tech ranks 11th among the top 100 colleges and universities in the “Team” Cyber Power Rankings, 51st in the Individual Rank, and 23rd in the Participation Rank. The Cyber Power Rankings were created by Cyber Skyline in partnership with the National Cyber League (NCL). The rankings represent the ability of students from these schools to perform real-world cybersecurity tasks on the Cyber Skyline platform, such as identify hackers from forensic data, pentest and audit vulnerable websites, recover from ransomware attacks, and more. Schools are ranked based on their top team performance, their top student’s individual performance, and the aggregate individual performance of their students. View the full ranking list at

Founded in 2011 to provide an ongoing virtual training ground for participants to develop, practice, and validate their cybersecurity skills, the NCL is a defensive and offensive puzzle-based, capture-the-flag style cybersecurity competition. Its virtual training ground helps high school and college students prepare and test themselves against cybersecurity challenges that they will likely face in the workforce. All participants played the games simultaneously during all of the Fall season games.

The NCL challenges are based on the CompTIA Security+™ and EC-Council Certified Ethical Hacker (CEH)™ performance-based exam objectives and include the following content: Open Source Intelligence, Scanning, Enumeration and Exploitation, Password Cracking, Traffic Analysis, Log Analysis, Wireless Security, Cryptography, and Web Application Security. Players of all levels can participate in the NCL games. Through easy, medium and hard challenges, students have multiple opportunities to excel.

Learn more about the NCL at:

Cyber Skyline Logo

Cyber Skyline is an immersive cloud platform on which to practice, develop, and measure technical cybersecurity skills. It is built for Incident Response Handlers, Security & Network Engineers, SOC Analysts, Software Engineers, Pentesters, and more. Visit the Cyber Skyline website at:

Jinshan Tang Receives Research Excellence Fund Award

Jinshan Tang

The Vice President for Research Office recently announced the Fall 2019 Research Excellence Fund (REF) awards. The awardees included College of Computing Professor Jinshan Tang, a member of the ICC’s Center for Cyber-Physical Systems, who was awarded a Portage Health Foundation (PHF) Infrastructure Enhancement (IE) Grants for his proposal, “High Performance Graphics Processing Units.”

The REF Infrastructure Enhancement (REF-IE) grants are designed to provide resources to develop the infrastructure necessary to support sponsored research and graduate student education. Funded projects typically focus on acquisition of equipment, enhancement of laboratory facilities, or enhancement of administrative support structure to expand the research capability of the unit.

For additional information about the Research Excellence Funds, visit the REF website.

Timothy Schulz Receives University Professor Award

Timothy Schulz
Timothy Schulz

Timothy Schulz, professor of electrical and computer engineering and member of the ICC Center for Data Science, has been awarded the prestigious University Professor title, which recognizes  faculty members who have made outstanding scholarly contributions to the University and their discipline over a substantial period of time.

The University’s most prestigious faculty awards–announced last spring–were presented Wednesday, September 18, at a ceremony in the Van Pelt and Opie Library. Making the presentations were University President Richard Koubek, Provost and Senior Vice President for Academic Affairs Jacqueline Huntoon and Vice President for Research David Reed.

Alex Sergeyev Wins ASEE Best Paper Award

Alex Sergeyev

College of Computing Professor Alex Sergeyev (DataS) presented his research article, “University, Community College and Industry Partnership: Revamping Robotics Education to Meet 21st Century Workforce Needs – NSF Sponsored Project Final Report,” at the 2019 American Society of Engineering Education (ASEE) annual conference, receiving the Best Paper Award in the Engineering Technology Division.

The conference took place June 16-19 in Tampa, Florida.

Co-authors of the publication are S. Kuhl, N. Alaraje, M. Kinney, M. HIghum, and P. Mehandiratta. The paper will be published in the fall issue of the prestigious Journal of Engineering Technology (JET).

Bo Chen Receives $250K NSF Award for Mobile PDE Systems Research

Bo Chen, CS

Bo Chen, assistant professor of computer science and member of the Institute of Computing and Cybersystems Center for  Cybersecurity, is the principal investigator on a project that has received a $249,918 research and development grant from the National Science Foundation. The project is entitled, “SaTC: CORE: Small: Collaborative: Hardware-Assisted Plausibly Deniable System for Mobile Devices.” This is a potential three-year project.

Abstract: Mobile computing devices typically use encryption to protect sensitive information. However, traditional encryption systems used in mobile devices cannot defend against an active attacker who can force the mobile device owner to disclose the key used for decrypting the sensitive information. This is particularly of concern to dissident users who are targets of nation states. An example of this would be a human rights worker collecting evidence of untoward activities in a region of oppression or conflict and storing the same in an encrypted form on the mobile device, and then being coerced to disclose the decryption key by an official. Plausibly Deniable Encryption (PDE) has been proposed to defend against such adversaries who can coerce users into revealing the encrypted sensitive content. However, existing techniques suffer from several problems when used in flash-memory-based mobile devices, such as weak deniability because of the way read/write/erase operations are handled at the operating systems level and at the flash translation layer, various types of side channel attacks, and computation and power limitations of mobile devices. This project investigates a unique opportunity to develop an efficient (low-overhead) and effective (high-deniability) hardware-assisted PDE scheme on mainstream mobile devices that is robust against a multi snapshot adversary. The project includes significant curriculum development activities and outreach activities to K-12 students.

This project fundamentally advances the mobile PDE systems by leveraging existing hardware features such as flash translation layer (FTL) firmware and TrustZone to achieve a high deniability with a low overhead. Specifically, this project develops a PDE system with capabilities to: 1) defend against snapshot attacks using raw flash memory on mobile devices; and 2) eliminate side-channel attacks that compromise deniability; 3) be scalable to deploy on mainstream mobile devices; and 4) efficiently provide usable functions like fast mode switching. This project also develops novel teaching material on PDE and cybersecurity for K-12 students and the Regional Cybersecurity Education Collaboration (RCEC), a new educational partnership on cybersecurity in Michigan.

Publications related to this research:

[DSN ’18] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen Tao Zhu, Yangguang Tian, Zhan Wang, and Albert Ching. MobiCeal: Towards Secure and Practical Plausibly Deniable Encryption on Mobile Devices. The 48th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN ’18), June 2018 (Acceptance rate: 28%)
[Cybersecurity ’18] Qionglu Zhang, Shijie Jia, Bing Chang, Bo Chen. Ensuring Data Confidentiality via Plausibly Deniable Encryption and Secure Deletion – A Survey. Cybersecurity (2018) 1: 1.
[ComSec ’18 ] Bing Chang, Yao Cheng, Bo Chen, Fengwei Zhang, Wen Tao Zhu, Yingjiu Li, and Zhan Wang. User-Friendly Deniable Storage for Mobile Devices. Elsevier Computers & Security, vol. 72, pp. 163-174, January 2018
[CCS ’17] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. DEFTL: Implementing Plausibly Deniable Encryption in Flash Translation Layer. 2017 ACM Conference on Computer and Communications Security (CCS ’17), Dallas, Texas, USA, Oct 30 – Nov 3, 2017 (Acceptance rate: 18%)
[ACSAC ’15] Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. MobiPluto: File System Friendly Deniable Storage for Mobile Devices. 2015 Annual Computer Security Applications Conference (ACSAC ’15), Los Angeles, California, USA, December 2015 (Acceptance rate: 24.4%)
[ISC ’14] Xingjie Yu, Bo Chen, Zhan Wang, Bing Chang, Wen Tao Zhu, and Jiwu Jing. MobiHydra: Pragmatic and Multi-Level Plausibly Deniable Encryption Storage for Mobile Devices. The 17th Information Security Conference (ISC ’14), Hong Kong, China, Oct. 2014

Link to more information about this project:

Keith Vertanen and Scott Kuhl Awarded $500K NSF Grant

Scott Kuhl
Scott Kuhl

Keith Vertanen
Keith Vertanen

Keith Vertanen, assistant professor of computer science (HCC), and Scott Kuhl (HCC), associate professor of computer science, are principal investigators of a recently funded three-year National Science Foundation grant for their project, “CHS: Small: Rich Surface Interaction for Augmented Environments.” The expected funding over three years is $499,552.00.

Vertanen and Kuhl are members of Michigan Tech’s Institute of Computing and Cybersystems (ICC) Center for Human-Centered Computing. A 2018 ICC research seed grant funded by ECE Alumnus Paul Williams was used to produce some of the preliminary results in the successful proposal. More info about the Williams Seed Grant can be found here:

A related video can be found here:

Abstract: Virtual Reality (VR) and Augmented Reality (AR) head-mounted displays are increasingly being used in different computing related activities such as data visualization, education, and training. Currently, VR and AR devices lack efficient and ergonomic ways to perform common desktop interactions such as pointing-and-clicking and entering text. The goal of this project is to transform flat, everyday surfaces into a rich interactive surface. For example, a desk or a wall could be transformed into a virtual keyboard. Flat surfaces afford not only haptic feedback, but also provide ergonomic advantages by providing a place to rest your arms. This project will develop a system where microphones are placed on surfaces to enable the sensing of when and where a tap has occurred. Further, the system aims to differentiate different types of touch interactions such as tapping with a fingernail, tapping with a finger pad, or making short swipe gestures.

This project will investigate different machine learning algorithms for producing a continuous coordinate for taps on a surface along with associated error bars. Using the confidence of sensed taps, the project will investigate ways to intelligently inform aspects of the user interface, e.g. guiding the autocorrection algorithm of a virtual keyboard decoder. Initially, the project will investigate sensing via an array of surface-mounted microphones and design “surface algorithms” to determine and compare the location accuracy of the finger taps on the virtual keyboard. These algorithms will experiment with different models including existing time-of-flight model, a new model based on Gaussian Process Regression, and a baseline of classification using support vector machines. For all models, the project will investigate the impact of the amount of training data from other users, and varying the amount of adaptation data from the target user. The project will compare surface microphones with approaches utilizing cameras and wrist-based inertial sensors. The project will generate human-factors results on the accuracy, user preference, and ergonomics of interacting midair versus on a rigid surface. By examining different sensors, input surfaces, and interface designs, the project will map the design space for future AR and VR interactive systems. The project will disseminate software and data allowing others to outfit tables or walls with microphones to enable rich interactive experiences.