Category: Graduate

In Print: Testing the molecular cloud paradigm for ultra-high-energy gamma ray emission

Portraits of 3 astrophysics graduate students
PhD Candiates Rhiannon Turner, Samuel Groetsch, and Mahsa Najafi, co-authors on a new paper in Astronomy & Astrophysics.

Graduate students and researchers from the Department of Physics are collaborators on a new paper published in Astronomy & Astrophysics.

Ph.D. candidate Rhiannon Turner is the paper’s lead author. Co-authors include Ph.D. candidates Samuel Groetsch and Mahsa Najafi, as well as Petra Huentemeyer and Xiaojie Wang.

The paper is titled “Testing the molecular cloud paradigm for ultra-high-energy gamma ray emission from the direction of SNR G106.3+2.7.” In it, the authors explore a PeVatron candidate located in the northern part of our galaxy’s plane and aim to answer a long-standing question for the region — where are the PeV cosmic rays being accelerated?

“When most people think of astronomy, they imagine the night sky sparkling with stars, or our Milky Way galaxy painted across the sky. However, there is an entire astrophysical world untouchable by the naked eye,” said Turner, the paper’s corresponding author. “The High Altitude Water Cherenkov (HAWC) Observatory is a wide-field gamma-ray observatory located in Puebla, Mexico, that is operated by a worldwide collaboration. HAWC surveys two-thirds of the sky throughout the day and is sensitive to particles with energies ranging from 100s GeV to 100s TeV, which is about a trillion times more energetic than visible light. These highly energetic particles give us a way to probe extreme astrophysical objects, like Galactic pulsar wind nebulae (PWNe), electron-positron winds surrounding a fast-rotating neutron star (or pulsar); and shell-type supernova remnants (SNRs), the ejecta and shock fronts left behind after a star’s core collapse and explosion. These objects are able to accelerate particles known as cosmic-rays up to PeV (10^15 eV) energies. These types of accelerators are known as Pevatrons.”

In the paper, HAWC collaborators present an updated analysis on the Boomerang region, which is home to two possible PeVatrons: supernova remnant G106.3+2.7 and the boomerang shaped pulsar wind nebula from pulsar J2229+6114. This analysis probes the highest energy emission for this region (>56 TeV) and utilizes molecular clouds, dense regions of molecular hydrogen, to model the region’s shape.

“This modeling technique has not previously been used for a PeVatron study, but the good spatial coincidence between the molecular cloud and the gamma-ray emission in this region provides confirmation that this new avenue for PeVatron identification could help close the information gap for which astrophysical objects accelerate cosmic-rays to PeV energies,” said Turner.


About the Physics Department

Physicists at Michigan Technological University help students apply academic concepts to real-world issues. Our physicists take on the big questions to discover how the universe works—from the smallest particles to the largest galaxies. The Physics Department offers three undergraduate degrees and three graduate degrees. Supercharge your physics skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at physics@mtu.edu. Follow us on FacebookTwitter, and YouTube for the latest happenings. Or read more at the Physics Newsblog.

Tech Team Tackles Tar Balls’ Impacts On Climate

Research by Claudio Mazzoleni and physics alumni Susan Mathai ’23 and Swarup China ’12 featured in a news article in Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory (PNNL) by the EMSL. Mazzoleni and a multi-institutional team of researchers set out to determine exactly how solar radiation from the sun interacts with individual tar balls dispersed over a mountainous region in northern Italy.  The research assesses the optical properties of individual tar balls to better understand their influence on climate. 

Tar balls, found in biomass-burning smoke (think smoke from forest fires), impact the Earth’s radiative balance. Understanding the optical properties of tar balls can help reduce uncertainties associated with the contribution of biomass-burning aerosol in current climate models.

The original paper was selected for the cover of the Nov 7th issue of Environmental Science and Technology, and was co-authored by Tyler Capek and Susan Mathai (both Physics); Daniel Veghte of The Ohio State University; Zezhen Cheng, Swarup China ’12 (PhD Atmospheric Sciences), Libor Kovarik, Mazzoleni, and Kuo-Pin Tseng, of the PNNL; and Silvia Bucci and Angela Marinoni, Institute of Atmospheric Sciences and Climate (ISAC)-National Research Council of Italy.

Image of Claudio Mazzoleni
Claudio Mazzoleni
Professor, Physics
Image of Susan Mathai
Susan Mathai ’23
Image of Swarup China
Swarup China ’12

Climate Conference Reflections from Elise Rosky

Recent physics alum Dr. Elise Rosky and Geophysics PhD candidate Gabriel Ahrendt recently attended COP28, the Conference of Parties (COP) in Dubai, United Arab Emirates. It is the largest climate conference in the world. Over 40,000 people from government, academia, research, non-governmental organizations, commerce, and elsewhere attend the annual United Nations conclave. They discuss the latest research and insights concerning climate change and negotiate solutions to minimize the impacts of climate change on the planet.

Dr. Elise Rosky
Climate conference attendee Dr. Elise Rosky

“I learned that scientists are being asked to provide better data about the oceans, mountain ecosystems, and severe weather forecasting,” said Rosky. “But it is made clear that this needs to be done in an interdisciplinary way, that gives communities ownership of the information, is inclusive of indigenous world views, and builds scientific capacity within each country. Because addressing a crisis is complex and involves social aspects as well as logical and technological aspects, without the aforementioned characteristics, the science is unable to create the intended impact on communities that it aims for.”

Rosky moderated multiple panels, including a panel titled “The science-policy interface: How can researchers shape critical climate policies?” The panel included Raina Taitingfong, Indigenous Chamoru and Wildlife Refuge Specialist; Bradley R. Colman, President of the American Meteorological Society; Mariana Rocha de Souza, coral reef biologist; Dr. Ana Spalding, professor of interdisciplinary social sciences and environmental studies; Dr. Andriannah Mbandi, chemical engineer and atmospheric scientist; and Shikha Bhasin, science and policy advisor for UN environmental programs.

Dr. Rosky completed her PhD in fall 2023 working with her co-advisors Raymond Shaw and Will Cantrell. Her thesis Large cloud droplets and the initiation of ice by pressure fluctuations: Molecular simulations and airborne in-situ observations ties the molecular physics of ice-nucleation to the growth and subsequent freezing of droplets in clouds.

You can read more about Rosky and Ahrendt’s reflections on the climate conference in the Daily Mining Gazette.

About the Physics Department

Physicists at Michigan Technological University help students apply academic concepts to real-world issues. Our physicists take on the big questions to discover how the universe works—from the smallest particles to the largest galaxies. The Physics Department offers three undergraduate degrees and three graduate degrees. Supercharge your physics skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at physics@mtu.edu. Follow us on FacebookTwitter, and YouTube for the latest happenings. Or read more at the Physics Newsblog.

Dash to Deliver Graduation Greetings at Fall Commencement

We are so excited to learn Sushree Dash has been chosen as the graduate speaker for fall commencement. Dash will share memorable Michigan Tech moments and advice for the future at the ceremony. The ceremony will take place at 10:30 a.m. Saturday in the Varsity Gym in Michigan Tech’s Student Development Complex (SDC). Dash earned her Ph.D. in Applied Physics.

It’s a fitting end to a successful graduate career. Dash is a 2022 recipient of a Michigan Tech Doctoral Finishing Fellowship, among many other accomplishments. Dash is the recipient of the Ovshinsky and Distinguished Student Awards that recognize Ph.D. students and their research at American Physical Society conferences.

Dash has big plans for the commencement address. “I aim to highlight the power of resilience, mentorship, and the spirit of community that defines our time here,” said Dash. If it’s anything like Dash’s research, it will surely be insightful.

Read more about Dash in Michigan Tech News.

Sushree Dash and Husky mascot pose on the ski hill
Sushree Dash and Blizzard T. Husky after testing Newton’s law of gravity on the ski slopes at Mont Ripley (Image courtesy Sushree Dash)

About the Physics Department

Physicists at Michigan Technological University help students apply academic concepts to real-world issues. Our physicists take on the big questions to discover how the universe works—from the smallest particles to the largest galaxies. The Physics Department offers three undergraduate degrees and three graduate degrees. Supercharge your physics skills to meet the demands of a technology-driven society at a flagship public research university powered by science, technology, engineering, and math. Graduate with the theoretical knowledge and practical experience needed to solve real-world problems and succeed in academia, research, and tomorrow’s high-tech business landscape.

Questions? Contact us at physics@mtu.edu. Follow us on Facebook, Twitter, and YouTube for the latest happenings. Or read more at the Physics Newsblog.

Two Students Receive DoD SMART Scholarships

Dan Yeager
PhD Candidate Dan Yeager

Ph.D. candidates Dan Yeager and Lucas Simonson have each been awarded a Department of Defense Science, Mathematics, and Research for Transformation (DoD SMART) Scholarship.

The DoD SMART Scholarship provides students with full tuition for up to five years, mentorship, summer internships, a stipend, and full-time employment with the DoD after graduation. Dan and Lucas join a list of 26 prior Michigan Tech Huskies to have received this prestigious scholarship.

Dan is working with Professor Raymond Shaw, with a focus on cloud micro-physics and computational fluid dynamics. He is also serving as a physics representative to the Graduate Student Government.

Yeager will be affiliated with the Naval Oceanographic Office in Mississippi.

Lucas Simonson
PhD Candidate Lucas Simonson

Lucas is working with Professor Ramy El-Ganainy, where he studies Integrated Optics and Photonics; learning how light and matter interact on a quantum scale.

Simonson will be affiliated with the US Army’s C5ISR Center in Ft. Belvoir, Virginia.

Lucas Simonson, physics PhD candidate awarded scholarship to study in Germany

Lucas Simonson is off to study in Germany

Lucas Simonson has been awarded a scholarship by the German Academic Exchange Service (DAAD). He will study at the Max Planck Institute for the Physics of Complex Systems in Dresden.

The German DAAD is a joint organization of the universities and other institutions of higher education in the Federal Republic of Germany, and the world’s largest funding organization of its kind. Supported by public funds, the DAAD promotes international academic cooperation, especially through the exchange of students and academics. DAAD scholarships are awarded by selection committees comprising a panel of independent academics.

He looks forward to studying under Professor Kurt Busch starting October 2022 to the end of April 2023. “The rationale for this trip is that joining my advisor in Germany will allow me to proceed with my research activities at a fast pace without any delay due to his absence. It will also allow me to interact with world-class optics research groups at the Humboldt-Universität Berlin,” he says. “It’s a significant milestone in my academic career and will allow me to experience other cultures outside of those in the US to broaden my worldview,” says Lucas.

Studying in Germany adds another frame of reference in his study of physics. “Lucas is bringing a unique perspective to our group by combining an interdisciplinary education in both electrical engineering and physics,” says Ramy El-Ganainy, associate professor of physics.

Lucas obtained an MS in Applied Physics (back in the spring of 2021). He entered the PhD candidacy at the end of this past spring semester. Upon getting his PhD, Lucas plans to pursue R&D-related work at Ft. Belvoir in Virginia for The Command, Control, Communications, Computers, Cyber, Intelligence, Surveillance and Reconnaissance (C5ISR) Center, the U.S. Army’s information technologies and integrated systems center.

Outstanding Graduate Students

We’re proud of the excellent work our graduate students do, both in the lab and in the classroom. Congratulations to our students recognized by the graduate school for their outstanding work at Michigan Tech.

Oindabi Mukherjee earned the Outstanding Teaching Award for her phenomenal performance during Fall 2021. Oindabi is a PhD candidate studying gravitational lensing with advisor Dr. Robert Nemiroff.

Andrew Puyleart earned the Dean’s Award for Outstanding Scholarship for his work with advisor Dr. Brian Fick. Andrew is studying cosmic ray physics, working with the Pierre Auger Observatory to classify anomalous interactions between cosmic rays and the atmosphere.

Congratulations, Oindabi and Andrew!

In Print

Complex, noncore-shell morphology of BC-containing particle, from Figure 1, image A in recent study.

A recent study, Radiative absorption enhancements by black carbon controlled by particle-to-particle heterogeneity in composition, stemming from a collaboration between Brookhaven National Laboratory, Michigan Tech, and other institutions was recently published in the Proceedings of the National Academy of Sciences (PNAS) and has been highlighted in the research highlights section of Nature Climate Change this March. 

The research resulted in the development of a new modeling approach – guided by experimental results – to account more accurately for the effects of soot on climate. Coauthors of the paper include two former students of the Atmospheric Sciences Ph.D. program from the physics department, Drs. Janarjan Bhandari and Swarup China.

Janarjan Bhadari, ’18, currently works at the Hormel Institute, University of Minnesota, and Swarup China, ’14, is at the Pacific Northwest National Laboratory.