Day: November 25, 2019

Industrial Ecology

Photo of Shaelyn taken by Daniel Prada (daprada@mtu.edu).

This is a guest post by Shaelyn Koleber, who is an environmental engineering undergraduate student at Michigan Tech. She can be reached at sjkolebe@mtu.edu

Shaelyn took the photos included in her blog post.

Nature is full of self-sustaining ecosystems; there is a constant recycling of resources. There are complementary functions within nature and the environment is able to completely support itself without outside assistance. For example, trees absorb carbon dioxide and give off oxygen, while animals take in oxygen and give off carbon dioxide—a seemingly perfect complimentary cycle. Whether a plant is eaten by an animal or it dies naturally and decomposes on the forest floor, it is still supporting the ecosystem. Whatever nature produces eventually reaches the end of its life and will be consumed back into the ecosystem. A fallen tree limb, a dead animal, or an uneaten fruit or plant that has fallen to the floor are all absorbed and recycled back as useful forms to support the ecosystem. There is no waste produced from environmental processes and the ecosystem is a closed-loop of resources. This same concept can be applied in buildings and manufacturing where the waste produced from these processes can be used to support the ongoing production. Industrial ecology is a sustainability concept to improve the environmental management of industrial processes. Companies can keep a record of materials throughout a product’s life. There are many subcategories of industrial ecology that are used as analyzation and evaluation techniques to ultimately reduce the impact on the environment, such as: material flow analysis (MFA), life-cycle analysis (LCA), and input-output analyzation. Industrial ecology is an emerging concept that works to mimic the self-sustaining cycle of nature.

Introducing the ecological aspect to industry puts a generalized focus on environmental impact. Industrial ecology is a strategic guideline to use fewer resources while also finding a new purpose for exhausted materials and waste. This does not have to occur within one facility. Different businesses could work together to create networked, ecological industries: waste can be seen as a resource. The saying, “one man’s trash is another man’s treasure,” is demonstrated through the concept of ‘industry partnership.’ The by-product from one industrial process can be used as the input for a separate entity. For example, a coal-firing power plant has a lot of excess heat that can be distributed to a nearby community. This would reduce the energy and resources needed to provide heat services to the town, thus providing environmental and economic benefits. This could only occur with the cooperation of multiple companies independently. The transportation of these materials would have to be a short distance for the net environmental impact to be positive. This idea would have tobe mutually adopted for it to be effective, which could be seen in future years as more industries become conscious of their carbon footprint.

Industrial ecology is also seen in the emerging concept of cogeneration. Cogeneration, also known as combined heat and power (CHP), is when a heat engine is used to generate electricity and heat at the same time. Similar to the previously mentioned example, during the production of electricity, the heat can be harnessed and put to use instead of going to waste. This directly views the heat waste as a source and creates a concept of dual-purpose. Rather than the heat being seen as waste, it is seen as another useful product of the process. Smaller-scale industrial ecology concepts can be seen in the construction of homes or commercial buildings. Current construction techniques and technological resources build each utility with separate input needs and waste disposal. Most housing and commercial buildings do not have any industrial ecology, currently. People who plan on living in a house for an extended period of time or have a desire to live sustainably are more prone to implement advanced technologies. Instead of using an air-source air conditioner, a ground source heat pump can be used as a closed-loop system. These systems pump water from the ground where the temperature is constant year-round. While air-source heat pumps are less expensive and easier to install, ground-source pumps are much more efficient and sustainable. The ground-source pumps are buried pipes that loop around a three-to-six-foot-deep trench. This system is a constant exchange of heat with the ground and can heat or cool a home. Diagrams and explanations of the different heating systems can be found on https://smarterhouse.org/heating-systems/types-heating-systems. It takes less energy to simply move heat around than it is to generate heat; therefore, the ground-source pump does not consume a lot of energy. Since the ground-source heat pumps are more efficient, they are also more cost effective. A consumer that installs this system and plans on living in a home for a long time will see a return on their investment. This is just one example of many technologies/designs that exist as readily-available sustainable systems.

Industrial ecology is a concept that must be practiced by all companies and manufacturers; it must also be well-understood by the general public in order to be fully adopted and implemented into the function of society. Since our society relies heavily on industrial processes, we cannot simply shut them down. However, we can no longer standby and knowingly accept the pollution that companies create through their industrial processes. While it is not reasonable to shut down industrial processes completely, we must keep these companies responsible for the waste and pollution they create. A partial reinvention of industrial processes into industrial ecology will reduce the environmental impact significantly. Without the public’s understanding and demand for such changes, there will be no urgency to place official regulations and therefore create a zero-pollution global industry. This foreseen change will not come easily or naturally; it needs to be talked about and broadcasted on media to mass-educate the public. With a widely supported concept, the engineers, scientists, and policy makers can work together to put the ideas into action. Industrial ecology allows humans to increase their efficient use of ecosystems by mimicking what nature already does. The implementation of this concept will only come with the mutual support from companies, the government, the people, and environmental conservationists. If we continue to move forward with these concepts, the earth can thrive for many eons in our future.


Your Role in Progressing Toward a Soft-Energy Society

Photo by Meghal Janarda

This is a guest blog post from Zoe Reep, who is an undergraduate mathematics major at Michigan Tech. Zoe can be reached at zkreep@mtu.edu

As our society has grown in population, technology, and abilities, so has its need for energy. And as our need for energy has grown, we have been forced to step outside of early methods of capturing and extracting this energy. Over time, society has shifted from reliance on muscular and biomass sources such as animal labor and firewood in the 15th century to a reliance on fossil fuels such as coal, oil, and natural gas in the late 20th century (Evolution of Energy Sources).

Figure 1: Graph representing the evolution of energy sources across periods of time (Evolution of Energy Sources).

In the late 1900s, influential writer and scientist Amory Lovins took a critical look at the future of our energy sector in his essay “Energy Strategy: The Road Not Taken?.” He proposed that there are two ways in which society can proceed: the hard path, society’s current path characterized by intense fossil fuel consumption and lack of regard to the environmental effects of such consumption; and the soft path, the path that Lovins believed to be the better alternative characterized by renewable energy and the commitment to energy conservation and efficiency.

Those in support of the hard path argue that fossil fuels and nuclear energy alone can sustain our ever-growing population, with its ever-growing desire for energy, if we simply alter our extraction, conversion, distribution, and usage methods to be more efficient. Proponents of the hard path believe that society should focus on providing incentives, such as tax breaks and subsidies, for fossil fuel companies to encourage the exploration and extraction of coal, uranium, and petroleum. Following the decline of the availability of fossil fuels, these hard-pathers support a shift to nuclear power. Typically, those in support of the hard path envision a future of expensive, centralized systems (Newton).

In contrast, those in support of the soft path hold the belief that a reliance on solely fossil fuels is not only unsustainable in the long run, but dangerous. They believe that creating and sustaining large, concentrated facilities for power production enables powerful companies to dictate energy’s place in society and turns energy into a socioeconomic issue. Instead of these centralized systems, proponents of the soft path favor more local energy retrieval methods, such as solar panels on buildings or the use of wind turbines on properties. Additionally, soft-pathers would like to see society slowly transition from a heavy reliance on fossil fuels to a more dispersed reliance on renewable energy sources such as hydro, geothermal, solar, and wind power (Newton).

Lovins views sparked a time of controversy, but also brought up an important issue: which direction is the direction that we need to move in order to ensure that our successors have the same abilities to live full and meaningful lives as we do?

We’ve reached a point where it is difficult to argue that there isn’t something wrong with our current energy industry. [Check out https://ourworldindata.org/fossil-fuels for a look at the increase in fossil fuel consumption. Think our current methods can keep up with the ever-growing demand for energy?] Scientists and researchers have been presenting more and more evidence that our current path is unsustainable and that we might even reap the irreversible consequences of our procrastination and selfish desires in our lifetime. It is beginning to seem that the majority of people recognize the correlation between the dependence on fossil fuels and Earth’s degrading environment and atmospheric conditions , so what’s stopping us from converting to a more sustainable alternative?

We have grown increasingly dependent on energy and the comforts and commodities it supplies to us. We believe that others will find an answer for us, and that the answer will allow us to continue our life of ease. We hold the assumption that our own individual efforts will not produce change, since we are merely a single ant in the midst of a ginormous colony.

I tested a thought that I had on my Energy and Society class. I wanted to see if, when provided the education of why change was important and the means of producing that change, my peers would change small areas of their life that they had grown up comfortable with to benefit the world around them.

We had spent the previous class walking around campus and discussing areas that we felt could be improved, through methods such as user awareness or the implementation of more efficient systems,  to lessen energy consumption. The general consensus seemed to be that there were many aspects of our college life that, with a little change, could lower our energy consumption significantly and if only people knew about these areas, or acted on these areas, we would be in a much better position, energy-speaking.

I used a topic that I knew would strike controversy and that my class would be resistant to: food, and the environmental effects of the current animal agriculture industry – and our consumption of the proteins stemming from it.

Before I began, I asked my class whether they were vegetarian. This elicited several skeptical looks and maybe one or two hesitant “I once was…” or “I tried at one point…” I then provided them with some basic education on the negative effects of the animal agriculture industry through short videos. These videos walked my class through the water, land, and fuel consumption required to create even a single patty and informed them of the emissions and other land-and-water-degradation that results from a mass animal agriculture system.

Following the videos, I asked a very straightforward question: “Who is going to become vegetarian?” When that didn’t receive a response, I decided to cut them a little slack: “Who is going to change their diet?” That received a couple grunts.

I then posed one final question, which is what I want to leave you with today: if you’re not going to make the change, even after being educated about the issue and being provided means to pursue this lifestyle change (even if it is more expensive than the alternative, “normal” route), then what makes you think that anybody else will?

Stop believing that change will occur only when everyone buys into the change; start the change, and help people buy into it. Your actions are important and do create discussion. They have the potential to incite change. If you agree that this energy path we are taking is in fact unsustainable and quite dangerous to rely on, then step up, alter your lifestyle (yes, you might need to give up some of your comforts), and encourage others to do the same. And if you won’t do it for yourself, do it for the generations to come.

Zoe Reep.