Category: News

Michigan Tech Wins ASME/IEEE Heat Sink Design Challenge

Michigan Tech’s Heat Sink team. Undergraduate students are Gracie Brownlow and Kelsey Brinks. Graduate students are Behzad Ahmadi, Masoud Ahmadi, and Behnam Ahmadi.

A student team from Michigan Tech has been awarded first place in the ASME/K16 and IEEE/EPS Student Design Challenge: Expanding the Possibilities of Heat Sink Design Using Additive Manufacturing.

The competition called upon student teams K-16 to expand the possibilities of heat sink design using additive manufacturing. The four finalist teams are Michigan Tech, Purdue University, University of Arkansas, and Berlin Institute of Technology.

Advanced heat sink designs offering augmented cooling capabilities are required for effective thermal management of high-power electronic chips. Future heat sink designs should not only offer an effective heat transfer but also be compact and cost-effective. 

Composed of Michigan Tech graduate and undergraduate students in the Department of Mechanical Engineering-Engineering Mechanics, the team was first selected as a semi-finalist in March. Now, as a finalist, one member of the team will defend their heat sink design in front of industry leaders in the form of an oral presentation, Behzad Ahmadi. That will take place during the IEEE ITherm 2022 Conference coming up in San Diego from May 31 – June 3, 2022.

Michigan Tech’s Energy-X team heat sink designs: expanding the possibilities of heat sink design using additive manufacturing.

Undergraduate students are Gracie Brownlow and Kelsey Brinks. Graduate students are Behzad Ahmadi, Masoud Ahmadi, and Behnam Ahmadi. Assistant Professor Sajjad Bigham is the team advisor. He is the director of the Energy-X Lab (Energy eXploration Laboratory) at Michigan Tech.

For the competition, all teams were asked to design, build, and validate an aluminum heat sink made with additive manufacturing techniques made available by GE Additive. Next, teams prepared a white paper that justified their designs.

The Michigan Tech team was among selected to print their heat sink with GE Additive machines. It was then sent for testing, which then helped determine the finalists, due to their top designs.

Michigan Space Grant Consortium Awardees for 2022-2023

Michigan Space Grant Consortium NASA

The University of Michigan – Michigan Space Grant Consortium has announced grant recipients. Michigan Tech faculty and staff researchers receiving grants are:

Faculty Led Fellowships for Undergraduates

Brendan Harville for “Seismic Amplitude based Lahar Tracking for Real-Time Hazard Assessment.”

Sierra Williams for “Understanding the Controls of Solute Transport by Streamflow Using Concentration-Discharge Relationship in the Upper Peninsula of Michigan.”

Graduate Fellowships

Espree Essig for “Analyzing the effects of heavy metals on vegetation hyperspectral reflectance properties in the Mid-Continent Rift, USA.”

Caleb Kaminski for “Investigation of Ground-Penetrating Radar Interactions with Basaltic Substrate for Future Lunar Missions.”

Katherine Langfield for “Structural Characteristics of the Keweenaw and Hancock Faults in the Midcontinent Rift System and Possible Relationship to the Grenville Mountain Belt.”

Tyler LeMahieu for “Assessing Flood Resilience in Constructed Streambeds: Flume Comparison of Design Methodologies.”

Paola Rivera Gonzalez for “Impacts of La Canícula (“Dog Days of Summer”) on agriculture and food security in Salvadoran communities in the Central American Dry Corridor.”

Erican Santiago for “Perchlorate Detection Using a Graphene Oxide-Based Biosensor.”

Kyle Schwiebert for “LES-C Turbulence Models and their Applications in Aerodynamic Phenomena.”

HONES Awards

Paul van Susante for “Lunabotics Competition Robot.”

Research Seed Grants

Xinyu Ye for “Analyzing the effects of potential climate and land-use changes on hydrologic processes of Maumee River Watershed using a Coupled Atmosphere-Lake-Land Modeling System.”

Pre-College Educational Programs

Jannah Tumey for “Tomorrow’s Talent Series: Exploring Aerospace & Earth System Careers through Virtual Job-Shadowing.”

Sustainable Foam: Coming Soon to a Cushion Near You

Chemical engineering major Lauren Spahn presented her research at the Michigan Tech Undergraduate Research Symposium. Her lignin project was supported by Portage Health Foundation, the DeVlieg Foundation, and Michigan Tech’s Pavlis Honors College.

Most polyurethane foam, found in cushions, couches, mattress, insulation, shoes, and more, is made from petroleum. What if it could be environmentally-friendly, sustainable, and made from renewable biomass? It’s entirely possible, thanks to the work of chemical engineering student Lauren Spahn and her fellow researchers at Michigan Tech. It all happens in the Biofuels & Bio-based Products Lab at Michigan Tech, where researchers put plants—and their lignin—to good use. The lab is directed by Dr. Rebecca Ong, an associate professor of chemical engineering.

Q&A with Lauren Spahn

Please tell us a little about your work in the lab.

Our goal in working with Dr. Ong is to develop sustainable industries using renewable lignocellulosic biomass⁠—the material derived from plant cell walls. There are five of us working on Dr. Ong’s team. We develop novel co-products from the side streams of biofuel production, and pulp and paper production. We’re trying to make good use of the leftover materials.

 

Lignocellulose, aka biomass, is the dry matter of plants. Energy crops like this Elephant Grass, are grown as a raw material for the production of biofuels.

What kind of research are you doing?

My particular research project involves plant-based polyurethane foams. Unlike conventional poly foams, bio-based foams are generated from lignin, a renewable material. Lignin is like a glue that holds wood fibers together. It has the potential to replace petroleum-derived polymers in many applications. In the lab, we purify the lignin from something called “black liquor”⁠. It’s not what sounds like. Black liquor is a by-product from the kraft process when pulpwood is made into paper. Lignin is collected by forcing dissolved lignin to precipitate or fall out of the solution (this is the opposite of the process of dissolving, which brings a solid into solution). By adjusting the functional properties of lignin during the precipitation process, we hope to be able to tailor the characteristics of resulting foams. It’s called functionalization.

Typically in the lab process, functionalization occurs on lignin that has already been purified. What we hope to do is integrate functionalization into the purification process, to reduce energy and raw material inputs, and improve the economics and sustainability of the process, too.

Purified lignin, used to make bio-foam. The resulting foam will likely be light or dark brown in color because of the color of the lignin. It would probably be used in applications where color does not matter (such as the interior of cushions/equipment).

How did you get started in undergraduate research?

I came to Michigan Tech knowing I wanted to get involved in research. As a first-year student, I was accepted into the Undergraduate Research Internship Program (URSIP), through the Pavlis Honors College here at Tech. Through this program I received funding, mentorship, and guidance as I looked to identify a research mentor. 

How did you find Dr. Ong, or how did she find you?

I wanted to work with Dr. Ong because I found the work in her lab to be very interesting and relevant to the world we live in, in terms of sustainability. She was more than willing to welcome me into the lab and assist me in my research when I needed it. I am very thankful for all her help and guidance. 

Lignin is like a glue that holds wood fibers together, giving trees their shape and stability, and making them resistant to wind and pests. Pictured above, a biofuel plantation in Oregon.

What is the most challenging and difficult part of the work and the experience?

Not everything always goes according to plan. Achieving the desired result often takes many iterations, adjustments, and even restructuring the experiment itself. After a while, it can even become discouraging.

What do you do when you get discouraged? How do you persevere?

I start thinking about my goals. I enjoy my research—it’s fun! Once I remind myself why I like it, I am able to get back to work. 


Lignin at the nanoscale, imaged with transmission electron microscopy (TEM). Raisa Carmen Andeme Ela, a PhD candidate working in Dr. Ong’s lab, generated this image to examine the fundamental mechanisms driving lignin precipitation.

What do you enjoy most about research?

I enjoy being able to run experiments in the lab that directly lead to new designs, processes, or products in the world around me. It’s wonderful to have the opportunity to think up new product ideas, then go through the steps needed to implement them in the real world. 

What are your career goals and plans?

I plan to work in R&D for industry. I am very passionate about research—I want to continue participating in research in my professional career.

Why did you choose engineering as your major?

The field is so large. Chemical engineers can work in industry in numerous areas. I liked the wide variety of work that I could enter into as a career. 

Did you know?

  • Michigan Tech has more than 35 research centers and institutes
  • 20 percent of all Michigan Tech patent applications involve undergraduate students
  • Students in any engineering discipline are welcome to give research a try
  • Research expenditures at Michigan Tech—over $44 million-—have increased by 33% over the last decade, despite increased competition for research funding. 
  • Michigan Tech research leads to more invention disclosures—the first notification that an invention has been created—than any other research institution in Michigan.


Q&A with Xin Xi: Uncovering Global Dust-Climate Connections

Dr. Xin Xi: “Surface weather observations are worth a refreshed look and can be used for improving our dust-climate modeling capability.”

GMES Assistant Professor Xin Xi’s new open-source dataset, duISD, is featured in Michigan Tech’s Unscripted Research blog. Here, he tells us more about it.

Q: How did you get started studying dust and desertification? 

XX: I grew up in humid southern China and had no experiences with dust storms when I was young. When I started college in Beijing, I had personal encounters with the “yellow dust” or Kosa (in Korea and Japan). The sky turned murky yellow every spring, while the whole city was shrouded in a cloud of dust blown from northwestern China. 

When I started graduate school at Georgia Tech, atmospheric aerosols emerged as a central theme in climate research, largely because they are capable of counteracting the warming effect of greenhouse gasses and play a crucial role in the hydrological cycle. Like many others, I became interested in my research due to the positive influence of my Ph.D. advisor, an expert in atmospheric aerosols, particularly mineral dust. 

Q: Why did you decide to revisit the use of horizontal visibility? 

XX: Primarily because of the long timespan of the visibility record from surface weather stations. It is by far the longest instrumental data record of dust, including regions near the dust source where modern-day satellites have difficulties providing reliable observations. 

Long-term, uninterrupted data records are paramount for understanding the variability of dust in response to climate and land use changes. I believe the visibility record has not been used to its full potential, so I took on the effort to develop a homogenized dust-climate record.

Q: Who do you imagine will get the most use from your new dataset? How would a researcher make use of it, and why? 

XX: This new dataset is an initial version of the dust-climate dataset I have been working on. Currently it consists of monthly records of the ambient dust burden at more than 10,000  weather stations worldwide. It is presented in an easy-to-read format, so anyone familiar with spreadsheets can use it. Dust researchers may find it useful, because they can avoid the tedious preprocessing steps with the raw data and are presented with summary statistics to help them pick the stations for their region of interest.

Dr. Xi used the dataset to characterize dust variability and climate connections around the world. The results of his study are featured in an article in the Journal of Geophysical Research: Atmospheres

Q: Do you intend to update with future versions? 

XX: Definitely. I plan to conduct data fusion by combining the surface observations with additional climate and land information from satellites or models.

Q: What are the most unique and noteworthy aspects of this research? 

XX: It is a climate data record development project, and the ultimate goal is to create a quality-controlled dataset for the climate community to study trends, variability and relationships about dust and climate. In addition, I believe the dataset can offer other insightful information about the deficiency of current climate models. 

Q: What do you plan to research next? 

XX: I plan to take on the next step of updating the initial dataset I created, and develop new analytic results, which can convince myself — and, hopefully, the climate community — that surface weather observations are worth a refreshed look and can be used for improving our dust-climate modeling capability.

Xi’s open-source dataset, duISD, can be accessed online

Michigan Tech Represented at Midwest Growth Capital Symposium

SuPyRec logo.
ZiTechnologies logo with statement Clean Energy Pellets from Non-Recyclable Plastic-Paper.


Jim Baker (VPR) presented “Supporting Tech Companies from Pre-Launch to Investment” at the Midwest Growth Capital Symposium, held virtually and hosted by the University of Michigan’s Zell Lurie Institute for Entrepreneurial Studies.

The symposium also was attended by two Michigan Tech startup companies, SuPyRec and ZiTechnologies. Company representatives presented to prospective investors and hosted virtual booths throughout the event.

SuPyRec is led by David Shonnard (ChE) and is commercializing plastics recycling technology developed in his lab. ZiTechnologies is led by PhD graduate Stas Zinchik and is commercializing clean energy technology based on research conducted in Ezra Bar Ziv’s lab (ME-EM).

Both companies are leveraging support resources available within Michigan Tech’s Office of Innovation and Commercialization through Nate Yenor, director of technology business incubation, in close collaboration with MTEC SmartZone, the Michigan Small Business Development Center and Husky Innovate.

By Jim Baker, Vice President for Research Office.

The symposium took place May 17 and 18, 2022.

OHM and Michigan Tech Alumni team up to Lead Family Engineering Nights in Detroit Schools

Fifteen OHM staff helped present the Family Engineering Night sessions, including several Michigan Tech alumni.

From May 10-12, Michigan Technological University teamed up with OHM Advisors to provide STEM outreach at five schools in Detroit. 

The program they presented, Family Engineering, engages K-8 students and their families in engineering investigations. Family Engineering was created by Michigan Tech and partners in 2011 with a grant from the National Science Foundation. A key outcome of the program was the publication of the Family Engineering Activity & Event Planning Guide, published in 2011.

Sessions took place at the schools, followed by free pizza at Mackenzie Middle School, Clippert Multicultural Magnet Honors Academy, and Adams Middle School. The event began with short opener activities that adults and children explore together. These included: Glue is the Clue, Domino Diving Board, Who Engineered It?, Let’s Communicate, Boxing Beans, Picture This, Solid Ground, Hoop Glider, Inspired by Nature, Shifting Shapes, All The Right Tools, and Thrillseekers.

Next, families took part in three Engineering Challenges:

  1. Stop & Think – Why was this object designed? What need did it address? Can you make it better?
  1. Team Up – Discover why engineers work in teams. What helps a team work well together? How can we address challenges?
  1. Give Me Hand – How can an engineer help a person who has lost their hand, or some other part of their body?
Family Engineering Night took place recently in Detroit, with volunteer help from OHM Advisors.

Fifteen OHM staff helped present the sessions, including several Michigan Tech alumni.

Ron Cavallaro, Vice President of OHM Michigan, echoed the value of introducing kids to engineering at an early age. He earned his bachelor’s degree in civil engineering at Michigan Tech and is now a member of the Michigan Tech Department of Civil, Environmental and Geospatial Engineering’s Professional Advisory Board. “Many of the families that attended the events brought younger siblings,” said Cavallaro. It was awesome to see the middle school students, their parents and siblings helping each other on the challenges.”

“OHM Advisors has been seeking out ways to get younger children interested in STEM fields. We are fortunate to have had MTU reach out to us to help with this program.”

Ron Cavallaro, Vice President of OHM Michigan

Chandler Park Academy High School and UPrep Science & Math High School hosted another Michigan Tech alum, retired Lt. Colonel Otha Thornton, chair of Michigan Tech’s Diversity, Equity, Inclusion and Sense of Belonging (DEIS) Alumni Advisory Board, formed in Fall 2021. 

Lt. Colonel Otha Thornton

Thornton presented at four student assemblies as part of the outreach effort. He shared how students could find their own pathway to STEM and described STEM careers. Thornton also described highlights of his own career⁠—working directly with President Barack Obama, First Lady Michelle Obama, and Vice President Biden in the White House, along with Congress, to promote passage of the Every Student Succeeds Act. The Act supports STEM education in K-12 schools. 

Thornton’s STEM work is preceded by a 21-year career with the U.S. military. He earned the Bronze Star Medal for exceptional performance in combat operations during Operation Iraqi Freedom. His other military assignments included working with the White House Communications Agency and U.S. forces in Iraq. As the 53rd president of the National Parent Teacher Association (PTA), Thornton was the first and only African American male to serve as President in the National PTA’s 125-year history. 

Any school can access the Family Engineering Activity & Event Planning Guide to provide positive engineering experiences for K-8 students and their families. For more info, contact: Joan Chadde, jchadde@mtu.edu or 906-487-3341.

Michigan Tech Partners with Lockwood STEM Center: Expanding Educational Access in the Great Lakes Bay Region

The Lockwood STEM Center in Hemlock, Michigan opened in 2020, a fantastic place for students to learn and practice robotics.

This month, Michigan Tech launched a partnership with the Lockwood STEM Center, part of Hemlock Public Schools in Hemlock, to provide educational outreach and opportunities to its students.

As part of the partnership, Michigan Tech established a scholarship program for Hemlock students who participate in robotics activities while in high school and then enroll at Michigan Tech as first-year students. The award provides $1,000 and is renewable annually. Two students will begin receiving the scholarship in Fall 2022 (still to be announced).

Students work on a robot in the Blue Marble Security Enterprise. It’s one of 25 different student-led Enterprise teams operating at Michigan Tech

At Michigan Tech a variety of options exist for students who want to pursue robotics. The University also has a new BS in Robotics, in the Department of Electrical and Computer Engineering. Several Enterprise teams are focused on Robotics, including the Robotics Systems Enterprise, advised by Michigan Tech Professor (and alumnus) Jeremy Bos.

“Our partnership with the Lockwood STEM Center is in recognition of the incredible academic opportunities it provides to Hemlock Public School District students. We are thrilled to show our support for the Hemlock community and Great Lakes Bay region,” said Cassy Tefft de Muñoz, Executive Director of Enrollment Initiatives at Michigan Tech.  

“Who has robots? We have robots,” says Michigan Tech’s Robotic Systems Enterprise team, open to all majors on campus.

The Lockwood STEM Center was the vision of Tom and Dana Lockwood, teachers at Hemlock High School (HHS) who sought to advance STEM educational opportunities in the community. The state-of-the-art facility is truly a community effort with support from local individuals, industry and Hemlock Public Schools.

Former HHS student Gary Gariglio earned two bachelor degrees at Michigan Tech—one in electrical engineering (’86), and the other in business (’87). He is now president of Interpower Induction in Almont, Michigan. He delivered a keynote address to students and attendees during a special event on May 4 celebrating the new partnership. Gariglio highlighted the value of his Michigan Tech education and emphasized the importance of perseverance in the face of adversity—giving special acknowledgement to Matt Pumford and Greg Turner of Pumford Construction for their commitment and support in the oversight and construction of the Lockwood STEM Center. Pumford earned his bachelors degree in civil engineering at Michigan Tech in 1988.

The collaboration with Hemlock Public Schools is a continuation of Michigan Tech’s strong presence in the Great Lakes Bay Region. This includes a longstanding partnership with Hemlock Semiconductor supporting educational outreach and student attendance at Michigan Tech’s Summer Youth Programs (SYP).

Michigan Technological University is a public research university founded in 1885 in Houghton, Michigan, and is home to more than 7,000 students from 55 countries around the world. Consistently ranked among the best universities in the country for return on investment, the University offers more than 125 undergraduate and graduate degree programs in science and technology, engineering, computing, forestry, business and economics, health professions, humanities, mathematics, social sciences, and the arts. The rural campus is situated just miles from Lake Superior in Michigan’s Upper Peninsula, offering year-round opportunities for outdoor adventure.

Read More

Jeremy Bos: What’s Next After First?

STEM Center Named: See photos and learn more about the new Lockwood STEM Center.

Registration for Michigan Tech’s Summer Youth Programs is open and more information is available at mtu.edu/syp.

Powering the Moon—with Microgrids

MOON POWER — An artistic rendering of what a resilient microgrid for a lunar base camp might look like. Sandia engineers are working with NASA to design the system controller for the microgrid. (Illustration by Eric Lundin)

Professor Wayne Weaver and Research Professor Rush Robinett III were mentioned in a Sandia LabNews story, “Powering the moon: Sandia researchers design microgrid for future lunar base.”

The article details Sandia National Labs’ partnership with NASA to design a reliable and resilient microgrid for the moon. Weaver and Robinett are “heavily involved” in developing controller software to maintain an even voltage level on the grid, according to the story.

Three Michigan Tech Alumni Elected to the National Academy of Engineering

Congratulations to Dr. Sam Jenekhe, Boeing-Martin Professor of Chemical Engineering at the University of Washington; Dr. Sarah Rajala, former James L. and Katherine S. Melsa Dean of Engineering at Iowa State University; and Dr. Bill Hammack, William H. and Janet G. Lycan Professor of Chemical and Biomolecular Engineering at the University of Illinois. All three have been elected to the National Academy of Engineering, among the highest professional distinctions accorded to an engineer. New members of the NAE will be formally inducted in October at the NAE’s annual meeting.

Dr. Sam Jenekhe

Samson A Jenekhe ’77 is honored for discovery and understanding of conjugated materials for organic light-emitting diodes (OLEDs) widely used in the commercial sector. A professor of chemistry and the Boeing-Martin Professor of Chemical Engineering at the University of Washington, Jenekhe studies the fundamental physical and chemical properties of semiconductor materials, as well as their practical applications. Research topics have included organic and flexible electronics, the use of organic light-emitting diodes for lighting and displays, energy storage and conversion systems, semiconducting polymers and polymer-based photovoltaic systems.

Dr. Sarah Rajala

Sarah A. Rajala ’74 is honored for “innovations in engineering education: outcomes assessment, greater participation and retention of women in engineering, and an enhanced global community.” Rajala is an internationally-known leader in the field of engineering education and a ground breaker for women in engineering. She serves as a role model for young women and is passionate about diversity of thought and culture, especially in a college environment.

Dr. Bill Hammack

William S. Hammack ’84 is honored for innovations in multidisciplinary engineering education, outreach, and service to the profession through development and communication of internet-delivered content. As an engineer, Hammack’s mission over the last 25 years has been to explain engineering to the public. His media work — from his work in public radio to his books to his pioneering use over the last decade of internet-delivered video— has been listened, read, or viewed over seventy million times. He also recorded more than 200 public radio segments that describe what, why and how engineers do what they do. Hammack’s videos (The Engineer Guy) have more than 1.2 million followers on YouTube.

Michigan Tech Teams Win at CMU’s 10th Annual New Venture Challenge

Congratulations to these Michigan Tech New Venture Challenge 2022 Award Winners! L to R: Husky Innovate Program Manager Lisa Casper, students Jordan Craven, Bayle Golden, Ali Dabas, Rourke Sylvain, Jakob Christiansen, and Husky Innovate Co-Director Jim Baker

Central Michigan University (CMU) and Michigan Tech collaborate each year to offer Michigan Tech students a chance to compete in CMU’s New Venture Challenge (NVC). This showcase event provides an opportunity for students at both universities to present their businesses and network with prospective investors, mentors and partners. Student participants at NVC compete for a total of $60,000 in prizes and in-kind services.

On Friday (April 22), four Michigan Tech student teams pitched their ideas and businesses in person at Central Michigan University in Mount Pleasant. Michigan Tech Husky Innovate co-director Jim Baker and program manager Lisa Casper attended the event to support teams, as well as strengthen innovation and entrepreneurship connections.

Michigan Tech engineering management student Bayle Golden presents her pitch for her new wearable child safety device, SafeRow, at the CMU New Venture Challenge.
Michigan Tech construction management student Jakob Christiansen delivers his two-minute pitch for his new supply chain e-commerce platform, ProBoard.

Students had an opportunity to compete in either the two-minute pitch competition or the seven-minute business model competition. There was also a gallery competition, where teams had tables with individual displays and took questions from attendees.

The competition took place out of town during the last hectic week of spring semester at Michigan Tech. But in the end, all their hard work paid off: Michigan Tech teams brought home $21K in prizes for their ideas.

“Congratulations to our Husky Innovate student teams—your ideas have the potential to change the world.”

Lisa Casper, Husky Innovate Program Manager

Michigan Tech’s New Venture Challenge award winners:

Two-Minute Pitch Competition

  • Jakob Christiansen (construction management) won first place and received $4,000. Christiansen pitched “ProBoard,” an e-commerce platform to solve issues in the construction material supply chain.

Seven-Minute Pitch Competition

  • Bayle Golden (engineering management) won first place in the Social Mission category and received $10,000. Golden pitched “SafeRow,” an innovative wearable device designed to keep children safe when every second counts.
  • Rourke Sylvain and Ali Dabas (both biomedical engineering) won second place in the High Tech High Growth category, receiving $5,000. Their pitch was “imi (integrated molecular innovations),” an electrochemical biosensor for T4 detection.
  • Jordan Craven (management information systems, minoring in computer science) won third place in the High Tech High Growth category and received $2,000. Craven pitched “Tall and Small Designs,” a technology company that provides software as a service to retailers who sell clothes online.

“The results speak to the tireless efforts of our students—and the impact of the programs provided by Husky Innovate and its partners.”

Jim Baker, Husky Innovate Co-Director
Michigan Tech biomedical engineering students Ali Dabas and Rourke Sylvain discuss their electrochemical biosensor start-up, “imi”

In preparing for the New Venture Challenge, Michigan Tech students participated in a number of Husky Innovate workshops and review sessions. They also benefited from resources and expertise available within MTEC SmartZone, the local state-funded technology business incubator, and the Upper Peninsula Regional Small Business Development Center, which is hosted by Michigan Tech’s Office of Innovation and Commercialization in collaboration with the College of Business.

“Thanks go out to our distributed team of mentors and our sponsors at Michigan Tech, including the Pavlis Honors College, Office of Innovation and Commercialization, College of Business, College of Engineering, Biomedical Engineering, and Civil Engineering,” said Casper. “We also thank Central Michigan University, and especially Julie Messing, director of the Isabella Bank Institute for Entrepreneurship, for the collaboration and congenial hospitality.”

Michigan Tech management information systems student Jordan Craven pitched “Tall and Small Designs,” a new kind of software for retailers who sell clothes online