Category: News

Dean’s Teaching Showcase: Smitha Rao

Smitha Rao
Smitha Rao

College of Engineering Dean Janet Callahan has selected Smitha Rao, assistant professor in Biomedical Engineering, as our eighth spring 2021 Deans’ Teaching Showcase member.

Rao was selected for her extensive recruiting and supervision of undergraduates in student research. She has four to five undergraduate students each year that she mentors in her lab. Three of her students have won the Summer Undergraduate Research Fellowship (SURF) Award and she has participated in the Undergraduate Research Internship Program (URIP) six times. Both of these programs run out of the Pavlis Honors College.

Her approach to mentoring in her words is that she wants students to seek and gain a sense of accomplishment and ownership, to develop confidence in their own abilities, and — in the process — contribute to science. She likes to get undergraduates involved in topics that are of interest to them, so their efforts take on a deeper personal meaning. She sees mentoring undergraduate students as an opportunity to train the next generation of engineers while honing her own skills.

The results? Rao’s description of her work speaks for itself: “Out of the 20 plus students that I directly mentored either as an advisor or as an instructor, about 10 are in graduate school. One student from my lab was recently offered a full fellowship to pursue a PhD at a different university. I typically have about four to five undergraduate students each semester. However, this year I have 9 undergrad students (freshman through senior).”

Rao’s mentoring does not stop at just teaching them fundamental lab skills. She encourages them to participate in different events from competitions to conferences, provides them information relevant to their own interests, and continues to offer guidance as they gain independence in their own research projects. Many of them become co-authors on papers describing the research they help with and some have stayed on for graduate school. Several of her undergraduate students continue to remain in touch with her even after they graduated. She often discusses with students their future goals and expectations, offering them information about different ways to define and achieve success. Most importantly, she encourages leadership and independence. Students are encouraged to explore their interests, invest time and effort in their work, mentor others and enjoy their work.

She extends this approach to her teaching as well, peppering students with difficult challenges, coaxing responses, and sharing a laugh with over-the-top examples used to illustrate a point. In one student’s words, “When starting the Biomedical Engineering program in 2014, I was not expecting to build a relationship with any of the professors in the department. That all changed in the fall of 2016 when I took one of Dr. Rao’s classes. From there, so many doors of opportunity were opened for me just by reaching out to Dr. Rao. I was fortunate enough to work alongside her in her research lab gaining incredible experience in research. She was one of the most enthusiastic professors I had during my time at Michigan Tech and I attribute a lot of my success thus far to her guidance. During my last year, Dr. Rao helped revamp my resume, prepare me for interviews, and was excited to be a part of the process of helping me start my career. I will never forget when I got the call of being offered my dream job during a meeting with her and she was jumping up and down just as much as I was. Dr. Rao is truly a one-of-a-kind professor and person, I am so honored and thankful to have worked with her and continue to connect with her.”

A second student agrees that Rao’s mentoring extends to the classroom, saying “Dr. Rao’s mentorship of undergraduate students has been exemplary, giving students hands-on experience at applying exactly what they are learning in class towards solving real-world problems related to improving human health. Meaningful undergraduate research is part of the culture in our department and Dr. Rao has certainly promoted this important piece in the education of the next generation of engineers and scientists.”

Dean Callahan’s choice especially valued how seriously Rao takes mentoring. In her words, “Dr. Rao’s emphasis on hands-on science is inspirational. And in the classroom, she is well-known for engaging students with their learning. Working with students is her passion.”

Rao will be recognized at an end-of-term event with other showcase members, and is also a candidate for the CTL Instructional Award Series (to be determined this summer) recognizing introductory or large-class teaching, innovative or outside the classroom teaching methods, or work in curriculum and assessment.

By Michael R. Meyer, William G. Jackson CTL.

Above and Below the Mackinac Bridge: Kim Nowack and Amy Trahey

Mackinac Bridge Steeplejack. Photo by Tim Burke, MDOT

Amy Trahey and Kim Nowack generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

These two extraordinary fellow civil engineers and friends who each know the Mackinac Bridge, aka Mighty Mac—one of the world’s leading suspension bridges—like the back of their hand. Together they explain just what it takes to properly care for such a huge gem, the single greatest asset of the state of Michigan.

Kim Nowack is executive secretary of the Mackinac Bridge Authority. Amy Trahey is president and founder of Great Lakes Engineering Group. Both are graduates of Michigan Tech, too: Nowack earned her BS in civil engineering in 1985, and Trahey earned hers in 1994.

Michigan’s Mackinac Bridge at Sunset

Nowack is ultimately responsible for its safety, operation and maintenance. Putting it mildly, Nowack has vast experience and familiarity with the Mackinac bridge, nearly 20 years worth, and then some.

Prior to her tenure at the bridge, Nowack held several positions with the Michigan Department of Transportation (MDOT), including stints as a general engineer with the department’s construction division in Kalamazoo; project design, construction and assistant resident engineer in St. Ignace; and delivery engineer at MDOT’s Newberry Transportation Service Center (TSC).

Kim Nowack

In 2002, she became chief engineer for the Mackinac Bridge Authority, and was appointed to the position of Executive Secretary/CEO of the Mackinac Bridge in 2019. She is the first woman to hold either of these positions in the Bridge Authority’s 60-plus year history.

Nowack frequently gives presentations about the bridge to fellow engineers, aspiring engineering students, and middle and high school students interested in the STEM fields. Recently in recognition of that effort, Nowack received the 2021 Felix A. Anderson Image Award from the American Council of Engineering Companies (ACEC) of Michigan, noting her contributions to enhancing the image of the engineering profession. 

Joining in will be Audra Morse, professor and chair of Michigan Tech’s Department of Civil and Environmental Engineering. Morse is also a Fellow of ASCE, The American Society of Civil Engineers.

“I’m thrilled to have been selected for the Anderson award,” she said. “It’s amazing to be the first female honored this way. It’s been so rewarding to be an ambassador for the bridge and the civil engineering profession throughout my years at the Mackinac Bridge Authority.”

Trahey nominated Nowack for the award. “Kim is the epitome of why civil engineering is so awesome,” she said. “Kim has been an inspiration to me personally as a fellow civil engineer and to many others in the industry, too.”

At age 28, Trahey founded Great Lakes Engineering Group (GLEG), a civil engineering consulting firm. GLEG’s core business: everything bridges. The firm has been successful in providing bridge design, bridge inspection, and bridge construction engineering services for state and local governmental agencies as well as private clients. Trahey has worked on some of the largest and most complex bridges in the state of Michigan including I‐75 over the Rouge River, the Belle Isle Bridge, the Gross Ile Bridge, the International Bridge, and the Houghton-Hancock Lift Bridge.

In 2012 Trahey, along with other engineers and divers at Great Lakes Engineering Group, performed their first underwater safety and structural inspection of the Mackinac Bridge. 

Amy Trahey

“This opportunity was a defining moment in my career,” she said. “It brought my journey full circle and provided a true sense of fulfillment. If you can dream it…you can do it!”

In 2017 Trahey earned her SPRAT certification (Society of Professional Rope Access Technicians), which means she can use ropes to inspect difficult to access bridges and climb bridges. “It was the most physically and mentally challenging training I have experienced to date,” she says.

In 2019 Governor Gretchen Whitmer appointed Trahey to the Mackinac Bridge Authority. Amy is now vice chair of the Mackinac Bridge Authority and chair of the Finance Committee—a responsibility that Trahey takes very seriously, and enjoys even more.

“A bridge is a structure that spans obstacles, providing safe passage over something that is otherwise difficult or impossible to cross. It’s a soaring metaphor that captures my spirit.” she says. “I try to see obstacles not as obstacles, but as opportunities to solve problems and connect people. “To me, the Mackinac bridge is not only an iconic structure that resonates with all Michiganders—it proves that engineering has no limits, and it’s all about connecting people.”

An avid diver, Amy Trahey inspects Michigan bridges as part of her profession.

Amy, how did you first get involved in engineering. What sparked your interest?

I was born and raised in Lansing, Michigan and lived in the Upper Peninsula for 4 years while attending college at Michigan Tech. I knew I wanted to be a civil/structural engineer, after the years driving to the U.P. over the Mackinac Bridge, seen in all its glory when we would take the ferry rides to Mackinac Island, as well. Chicago also inspired me with its movable bridges along the Chicago River and its soaring buildings. I feel grateful and fortunate to have found my passion (bridges) so early in my career. As a result I have realized my goal to climb to the top, and dive to the bottom of many of Michigan’s most iconic bridges. From the Houghton‐Hancock lift bridge and the Zilwaukee bridge to the International Bridge in Sault Ste. Marie, the Blue Water Bridges, and the gem of the state of Michigan–the Mackinac Bridge.

The Trahey Family

Family and hobbies?

Rialato Bridge, Venice, Italy one of the oldest bridges over the Grand Canal, in a City that has over 600 bridges!

I’ve been married to my husband, Brian for 22 years and we have 2 sons, Ty and Quinn. We live in Grand Ledge, and share a family cottage on Drummond Island in the Upper Peninsula. I like to hike, ski, dive, bike, travel, and practice yoga and meditation. I also serve on the Michigan Department of Education, Special Education Advisory Committee, a committee that is near and dear to my heart and advocates for the rights of students with disabilities such as my son, Quinn, who is Autistic. In 2012 Quinn started planning family trips to iconic locations across the world. Seeing the world through his unique lens is inspiring and we are grateful for his perspective. He has quite literally, opened up our world. 

Kim on the tower!

Kim, how did you first get involved in engineering? What sparked your interest? 

My high school teachers lead me into engineering based on my abilities in high school.  I’m so thankful I had forward looking teachers that thought females should pursue whatever they were interested in.  I didn’t know what kind of engineering to go into, but was coached that I had an aptitude to go down the engineering path. I wanted to find a career that used my knowledge and skills to their maximum advantage. And my Mother was very supportive for me to reach as high as I could in life (my father died when I was 11). 

Kim with her daughter, Angela: “Good times!”

Family and hobbies?

I grew up in Grand Rapids and now live in Ignace, close to the bridge. I’m an avid reader, in several book groups. I knit, and I’m in a quilt group, too. I have a daughter, Angela, and two toddler granddaughters. I love spending time with them as much as possible. One of my best memories is with Angela. She was my little cheerleader and traveled with me to Houghton when I taught at summer youth programs. I will never forget her sitting in the lecture hall with the students and giving me a thumbs up before my show when she knew I was nervous. 

Play Mackinac Bridge drone footage video
Preview image for Mackinac Bridge drone footage video

Mackinac Bridge drone footage

MDOT photographer Tim Burke recently assisted a Japanese production company shooting a documentary about one of the Mackinac Bridge Authority’s steeplejacks. Here is some of the footage shot using a drone.

Monique Wells is New Director of Diversity, Equity and Inclusion at DTE Energy

Monique Wells, Michigan Tech Chemical Engineering Alumna, is the New Director of Diversity, Equity and Inclusion at DTE Energy.

Monique Wells, a Michigan Tech chemical engineering alumna, is the new director of Diversity, Equity and Inclusion (DEI) at DTE Energy.

DTE Energy (NYSE: DTE) is a Detroit-based diversified energy company involved in the development and management of energy-related businesses and services nationwide.

Wells is responsible for accelerating DTE’s progress in building a workplace where everyone feels valued and able to contribute their best energy toward serving customers, communities and each other.

“This is a critical time in history for us to work together toward unity and equity,” Wells said. “I’m excited to be part of a team at DTE who are so passionate about the company’s shared core values and about celebrating people’s diverse voices, perspectives and ideas.”

Wells earned a Bachelor’s degree in Chemical Engineering at Michigan Tech, and a Master’s degree in Career and Technical Education from the University of Toledo. She has experience as a production engineer at Dow and an instructor at Toledo Technology Academy.

Wells serves on the College of Engineering Advisory Board at Michigan Tech, and servers on the Spring Arbor University’s Engineering Advisory Board, as well.

“Monique’s deep knowledge of diversity, equity and inclusion, along with her engineering and teaching experience, will build on our progress within our company and in our communities,” said Jerry Norcia, president and CEO, DTE Energy. “She will be a great resource for our company and the communities we serve, and I look forward to supporting Monique’s leadership and seeing the collective impact our efforts will make.”

Read a Q&A with Wells here.

Joe Kraft ’02 Takes the Helm at MineMax

Michigan Tech Geological Engineering Alumnus Joe Kraft ’02 is the new CEO of Minemax, a software and consulting firm with offices in Denver and Perth.

Joe Kraft, a Michigan Tech geological engineering alumnus, is the new chief executive officer of Minemax.

“Designed for mining people, by mining people,” Minemax specializes in mine planning and scheduling solutions and software, and has offices in both in Denver, Colorado, and Perth, in Australia.

Kraft earned his bachelor’s degree in Geological Engineering from the Department of Geological and Mining Engineering and Sciences (GMES) in 2002. As a student, Kraft was in the Army Research Officer Training Corps, commissioned as a 2nd Lieutenant at graduation.

Following graduation he served as the leader of a 29-person mechanized combat engineer platoon for a year in Iraq. He earned the bronze star medal and other honors for his combat leadership actions.

Kraft’s service in the Army culminated as the aide to the Deputy Commanding General, where he was responsible for the security, logistics, scheduling, staff and administrative requirements for a General Officer of the 7th Infantry Division, rising to the rank of Captain. 

Kraft went on to gain more than 15 years of experience in mine planning and mine operations, including time spent working at Freeport-McMoRan Copper & Gold and Cliffs Natural Resources before joining Minemax as a Senior Mining Engineer in January 2014.

Not long after joining the company, Kraft was appointed as Minemax’s General Manager-Americas. For five years Kraft managed all aspects of software sales and services for the company’s North and South American markets. Now, as Minemax CEO, he will lead Minemax worldwide.

“I am extremely confident in Joe’s ability to take Minemax to the next level,“ explained Jim Butler, Minemax founder and former CEO. “Joe is very competent, has deep knowledge of mine planning and understands our customer’s businesses. He has the respect of staff, customers and affiliate companies. I am sure all stakeholders in Minemax will benefit from his leadership.“

Says Kraft, “It really is a great privilege to be able to lead an established company which has such an exceptionally talented and loyal staff. As a former military officer, I learned early on how powerful a cohesive team can be, and I look forward to the many great things we will accomplish in the years to come.”

According to the company, Minemax solutions—which includes strategic and operational mine planning software and consulting—cover the whole spectrum of strategic and operational mine planning, and help mining companies achieve production requirements, maximize resource utilization and optimize business value.

Apart from the occasional wilderness adventure, Kraft spends time with his two young boys who keep him busy in any spare moments he might have outside his tight professional schedule.

“I am so very blessed to have a small, wonderful family,” he says. “My two young boys are keen little adventurers themselves. My wife is also a dedicated professional in her field. We have adapted to many changes over the past years to balance life and career.”

Michigan Tech’s NSBE Student Chapter Will Reach 1,850 Detroit Middle and High School Students (Virtually!) During their 10th Annual Alternative Spring Break

Andi Smith is leading Alternative Spring Break 2021 for Michigan Tech Chemical Engineering student

Eleven members of Michigan Technological University’s student chapter of the National Society of Black Engineers (NSBE) Pre-College Initiative (PCI) plan to present to EVERY science class at Chandler Park Academy in Detroit—a total of 74 classes and 1850 students—during their 10th Annual Alternative Spring Break in Detroit from March 8-10. 

Their mission is twofold: encourage more students to go to college, and increase the diversity of those entering the STEM (Science, Technology, Engineering, Math) career pipeline.

NSBE Pre-College Initiative 2021 Alternative Spring Break will be virtual this year.

The following NSBE students are participating:

Andi Smith – Chemical Engineering
Jasmine Ngene – Electrical Engineering
Jalen Vaughn – Computer Engineering
Kylynn Hodges – Computer Science 
George Ochieze – Mechatronics
Catherine Rono- Biological Science
Christiana Strong – Biomedical Engineering
Trent Johnson – Computer Engineering
Meghan Tidwell – Civil Engineering
Oluwatoyin Areo – Chemical Engineering
Kazeem Kareem – Statistics

The NSBE classroom presentations are designed to engage and inspire diverse students to learn about and consider careers in engineering and science by interacting with role models from their home town (most of the participating NSBE students are from the Detroit area).

Their effort is designed to address our country’s need for an increased number and greater diversity of students skilled in STEM (math, science, technology, and engineering). This outreach is encouraged by the NSBE Professional Pre-College Initiative (PCI) program which supports and encourages K-12 participation in STEM. 

At Michigan Tech, NSBE student chapter outreach is funded by General Motors and the Department of Civil & Environmental Engineering. Effort is coordinated by members of the NSBE student chapter, with assistance from Joan Chadde, director of the Michigan Tech Center for Science and Environmental Outreach.

High school students are informed of scholarships available to attend Michigan Tech’s Summer Youth Programs, as well high school STEM internship opportunities at Michigan Tech.

For more information about the Michigan Tech NSBE student chapter’s Alternative Spring Break, contact Joan Chadde, Director, Center for Science & Environmental Outreach, Michigan Technological University, email jchadde@mtu.edu or call 906-369-1121.

Happy Engineer’s Week 2021!

Let’s imagine a better tomorrow. Join us!

This week, we’re celebrating National Engineers Week (Feb. 21-28). Everyone’s invited to special events on campus sponsored by Tau Beta Pi, the Engineering Honor Society student chapter at Michigan Tech.

Founded by the National Society of Professional Engineers in 1951, Eweek is celebrated each February around the time of George Washington’s birthday, February 22, because Washington is considered by many to be the first U.S. engineer.

At Michigan Tech, the week is celebrated with special events on campus all hosted by student organizations. Everyone is welcome! Please feel free to stop by and check out Eweek events as your schedule allows:

Monday, Feb. 22
Brainteasers—give your brain a mini-workout, courtesy of Michigan Tech’s Systems Engineering Association (SEA), 11am-2pm in the Dow Lobby.

Some founders of SEA, Michigan Tech’s relatively new Systems Engineering Association.

Tuesday, Feb. 23
Build with Built World Enterprise, 6-7 PM
Online, Zoom: https://michigantech.zoom.us/j/88350890241

Built World Enterprise at Michigan Tech

Wednesday, Feb. 24
Michigan Tech Engineering Alumni Panel, hosted by Tau Beta Pi
4-6 PMOnline, Zoom: https://michigantech.zoom.us/j/89023074247
Submit your questions in advance: https://docs.google.com/forms/d/e/1FAIpQLSdFvHtUjVrpO_iMmrQWel78S7D2BXjCNhROo4CoYLwSbJA5nw/viewform?usp=sf_link

Julia Zayan
Julia Zayan ’15, General Motors (Chemical Engineering)
Rebecca Mick
Rebecca Mick ’09, Amcor (Chemical Engineering)
Quinn Horn
Quinn Horn ’93, ’95, ’98, Exponent Consulting (Materials Science and Engineering)

Thursday, February 25
Metal foundry in a box with Materials United, 3-5 PMB, on campus, outside, between the M&M Engineering Building and Douglas Houghton Hall.

Foundry in a Box. Make something small, come pick it up later, after it cools!

Nationwide, Eweek is a formal coalition of more than 70 engineering, education, and cultural societies, and more than 50 corporations and government agencies. This year’s theme: Imagining Tomorrow. Dedicated to raising public awareness of engineers’ positive contributions to quality of life, Eweek promotes recognition among parents, teachers, and students of the importance of a technical education and a high level of math, science, and technology literacy.

One important goal: to motivate youth to pursue engineering careers in order to provide a diverse and vigorous engineering workforce.

Due to the pandemic, some E-Week events won’t be possible this year. One thing we’ll greatly miss is the traditional Michigan Tech E-Week cake, offered to all on campus by the Department of Engineering Fundamentals. The cake will be back, though: We look forward to E-Week 2022!

Chee-Wooi Ten: Ahead of the Cybersecurity Curve

The Night Lights of the United States (as seen from space). Credit: NASA/GSFC.

Chee-Wooi and Junho Kong generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

What are you doing for supper this Monday night 2/22 at 6 ET? Grab a bite with Dean Janet Callahan and Chee-Wooi Ten, Associate Professor of Electrical and Computer Engineering at Michigan Tech. His focus: power engineering cybersecurity.

Associate Professor Chee-Wooi Ten at Michigan Tech

“For many years as a power system engineer, we referred to ‘security’ as the power outage contingency subject to weather-related threats,” says Ten. “The redefined security we need today, cybersecurity, is an emerging field on its own, one that works synergistically with security systems engineers.”

Joining in will be Electrical Engineering Assistant Professor Junho Hong from the University of Michigan Dearborn. He is a power engineer, and a cybersecurity colleague and a longtime friend of Dr. Ten’s.

In an era of cyberwarfare, the power grid is a high-voltage target. Ten and Hong both want to better protect it. 

At issue are electrical substations, which serve as intersections in the nation’s power system. Because they play such a key role in our infrastructure, substations could be attractive targets. 

Assistant Professor Junho Hong, University of Michigan Dearborn. His research areas include Artificial Intelligence, Cybersecurity, Power Electronics, and Energy Systems.

A physical attack could damage parts of the grid, but a cyberattack to interconnection substations could cripple the entire system simultaneously. 

Some power companies remain reluctant to fully implement electronic control systems because they could compromise security. “This is a controversial issue for most utilities,” said Ten. “If the substation network is compromised, the grid will be vulnerable. If hackers know what they are doing, that could result in a major blackout.“

With better security from cyberattacks, companies could use Internet Protocol (IP) communications to manage electronic control systems. “It would be faster, more efficient, and more economical, too,” says Ten. 

However, IP has a disadvantage: hackers are notoriously resourceful at breaking into IP networks, even when they are protected by firewalls.

Still, solutions to IP problems can be found, says Ten.

“Let’s say you check your front door once a day to make sure it is locked. Does that mean your house is secure? Probably not. Just because your door is locked doesn’t mean someone can’t get in. But if you put a camera in front of your house with incoming motion data to determine if there is movement around your house, you have more data so security can be better assessed.” 

““The key word, says Ten: “Interconnected.”

The power grid is too big, so we need to simulate cyberattacks to see what happens, adds Ten. “When it comes to power system research, data is really sensitive, and cybersecurity clearance requirements make it hard to get data. That is why simulations are important. We try to make simulations as close as possible to real systems. That we can ‘try out cyber attacks’ and see the impacts.

Running simulations saves utility companies time and money, and helps them prepare for the cascading effects of such an event, adds Ten. “We can emulate the real world without constructing the real thing, something called the ‘digital twin’.”

“We can solve the problems of cybersecurity by understanding them first. Then, we can apply analytical methods to deal with those problems.”

– Chee-Wooi Ten

Ten works with government agencies, power companies, and the vendors that provide products used to strengthen substations’ cybersecurity framework. By collaborating with all the stakeholders, he aims to transform the energy industry by improving efficiency, reliability and security, both in the power grid and cyberspace. No single vendor can do everything; it has to be synergistic,” says Ten.

It’s true: hypothetical impact analysis scenarios are a lot like one scene in the movie, Avengers. Dr. Ten will explain at Husky Bites!

Professor Ten, how did you first get involved in engineering. What sparked your interest?

I actually did not do well academically in high school. I was obsessed with computers. My dad had some money to sponsor my studies in the US. And since computers were invented in the US, I wanted to be part of that, so I went to Iowa State University. In Fall 1997, the Asian economic crisis hit and affected my studies, so I changed my major to power engineering, in the Department of Electrical and Computer Engineering. When I look back, I have billionaire George Soros to thank. (Many people feel his aggressive Asian currency trades were to blame.) The power engineering program at Iowa State was one of the most historically established programs in the US. I was able to get involved in undergraduate research, with mentoring from a professor who taught me a great deal.

Family and hobbies?

I was born in Malaysia and was recently naturalized as a US citizen. My ethnicity is actually Chinese. My grandparents came to Malaysia from China early in the 20th century due to war and hunger, to pursue happiness. My brother is an engineer, too. My dad didn’t finish his university studies. I am the only one in our family with a doctorate degree.  My parents sent me to a foreign country to get a taste of life. (Imagine, I did not know how to speak English and had to relearn everything in the US!) I would not be who I am today had I stayed in Malaysia.

I’ve been living in Houghton now for about 11 years. My newest hobby is downhill skiing with my daughter. She’ll be turning 9 soon. Our ski hill, Michigan Tech’s Mont Ripley, is just 10 minutes from down the road.

Professor Hong, how did you first get involved in engineering? What sparked your interest? 

“In South Korea, two years of military service is a requirement after graduating from high school,” says Dr. Junho Hong. “Before going to college I served two years in the Navy, and learned a lot about technology on Navy ships.”

When I got to college, computer science was a hot topic but I wanted to better understand electricity. Without electricity how can we have technology? So, I chose electrical engineering. After graduation, I started looking at the much bigger work going on outside my country. I decided to earn my PhD. That’s how I met Chee-Wooi. We both studied at the University College Dublin in Ireland. We had the same doctorate advisor, Professor Chen-Ching Liu.

Dr. Hong (r) with his graduate advisor at Washington State University, Dr. Chen-Ching-Liu (l). Dr. Liu was also Dr. Ten’s PhD advisor at Washington State University. A world traveler, Dr. Liu is now at Virginia Tech. He was recently named a member of the US National Academy of Engineering in 2020 for his contributions to computational methods for power system restoration and cybersecurity.

Family and hobbies?

Before the pandemic, I used to go swimming at least once a day. Right now I’m doing a lot of training, instead. I’ve got equipment in my home—for cycling, weight training and working out. My wife and two kids are in South Korea for the time being. Early in the pandemic, my wife had some medical issues, and with hospitals here in Southeast Michigan overwhelmed with Covid patients, she had to go back home for medical treatment. It’s been hard to endure. I miss them greatly! My son and daughter are 9 and 6. 

Dean’s Teaching Showcase: Jeremy Shannon

Jeremy Shannon
Jeremy Shannon

The College of Engineering has selected Jeremy Shannon, principal lecturer in the Department of Geological and Mining Engineering and Sciences (GMES), for this week’s Deans’ Teaching Showcase. Dean Janet Callahan selected him for teaching excellence in a field course.

Shannon joined GMES as a lecturer in 2007. He teaches a variety of courses throughout the year including Understanding the Earth (GE2000), a large course that is taken by many non-major students. Department Chair Aleksey Smirnov (GMES) says “Dr. Shannon provides a vital contribution to GMES undergraduate instruction and advising. He is an outstanding instructor and an impactful and trusted mentor.”

One of Shannon’s favorite courses is Field Geophysics (GE3900), a summer, a five-credit course required for Geological Engineering, Geology, and Applied Geophysics majors. Most geoscience programs only require a field geology course, so this class provides an extremely unique, hands-on experience for GMES students. The five-week-long class is set up like a consulting job with weekly projects. Each project uses a different geophysical technique, or a combination thereof, with specified goals. As one student put it, “Jeremy had an innate ability to connect with us all, especially on field trips. He utilized more field visits than any other professor I had at Tech. This gave me real-life scenarios and examples to help cement concepts I had learned in the classroom.”

A typical week involves fieldwork, the reduction, interpretation and modeling of data, and a final written report or oral presentation. Shannon worked for a few years in environmental consulting and likes that he can share with students his own experiences that mimic the format of this class, especially the report writing. This class offers one of the best opportunities in the GMES curriculum for practice in scientific writing, an invaluable skill that will translate directly for students that either choose employment or decide on graduate school. A recent alumnus observed that Shannon made sure the students also “focused on the hard work that occurred back in the classroom completing the reports to improve students’ report writing skills. Jeremy had very high standards for the reports. His resolve in consistent writing and proper formatting for all reports significantly influenced my use of proper documentation, even today.”

Shannon is an MTU alumnus and took the Field Geophysics class as an undergraduate in the summer of 1992. He was honored to take over the class in 2007 from his former professor and mentor Dr. Jimmy Diehl, who taught it for 25 years. He has continued and built upon this legacy to deliver a unique field experience to GMES students. In particular, Shannon has proactively worked to upgrade the geophysical equipment which is typically expensive. Over the last several years, with the help of departmental, alumni, and C2E2 funding, new seismic refraction and ground-penetrating radar systems were purchased. Other equipment includes magnetometers, electrical resistivity meters, electromagnetic instruments, and one precious gravity meter. And he makes using the equipment fun. Another student said, “Jeremy helps students to see the joy in fieldwork. He makes it exciting to see seismic waves be recorded by a geophone, or he encourages us to be patient in aligning the gravimeter.”

The class projects typically target objects or structures within tens of meters below the surface. The projects include determining depth to bedrock and water table, mapping contacts between different rock types, or locating buried metallic and non-metallic objects on the site of a Calumet & Hecla stamp mill in Lake Linden. About five years ago, Shannon collaborated with the Michigan DNR and had the class perform geophysical surveys to delineate a buried bedrock valley near McLain State Park. There is no definite surface expression of the valley as it is filled with glacial till, but a gravity survey showed that the ~3 km wide and 200 meters deep valley trends to the north through a portion of the park. The absence of bedrock near the surface where the valley is located is precisely the location where significant beach erosion is taking place. These results became part of the decision-making process, which resulted in the recent restructuring of the park layout.

Dean Callahan summarizes: “Shannon’s dedication to continually improve the field course provides a unique learning environment for our students in which they develop skills that they will use throughout their careers. He is very deserving of this recognition.”

Shannon will be recognized at an end-of-term luncheon with other showcase members, and is also a candidate for the CTL Instructional Award Series (to be determined this summer), recognizing introductory or large-class teaching, innovative or outside the classroom teaching methods, or work in curriculum and assessment.

Written by Aleksey Smirnov, Chair of Geological and Mining Engineering and Sciences.

A Note to Our Students

Dean Janet Callahan stands in front of the summer gardens on campus at Michigan Tech
Janet Callahan, Dean of the College of Engineering, Michigan Technological University

Your journey is unique: Each person here comes from a different background, and has had different experiences across their life.

The lived experiences of each of us are different; they are not equal, and they are certainly not equitable. My experience, as the daughter of an engineer and a nurse (guess which one was my mother!) is an example—I was exposed to the best of school districts, played with toys as a child that taught me 3d spatial skills, and I was indulged by my parents when I showed an interest in photography. And then found myself one of about four women in a class size around 40, as I studied engineering in the 1980s—and truly—at my alma mater there were only male-gendered bathrooms on every floor, and one I could use on one floor only. Things have changed now, but my point is, this was my journey, and it was my unique journey.

I have heard from many students, especially in this new year, who have reached out to me directly, to share experiences, concerns, and frankly their outrage as well. Please do not hesitate to contact me if you have ideas about how we can improve your experience as a student and as a member of our community. And, I would love to hear your story—your journey to Michigan Tech, your experiences here, and your dreams. Just send me an email and we’ll have a zoom meeting: Callahan@mtu.edu And if you are in a student club or organization and would like me to stop in during a meeting, to listen, I would be honored to do so.

I would love to hear your story—your journey to Michigan Tech, your experiences here, and your dreams.

Dean Janet Callahan

This is a true statement: diversity in an equitable and inclusive environment is essential for the development of creative solutions to address the world’s challenges. Across your educational experiences you have probably learned that when we design solutions, we must have a diverse team with multiple perspectives in order to develop the best solutions. Without a winning team, we can’t win. Our own perspective is not enough — we don’t know what we don’t know.

Finally, I assure you that we are fully committed to diversity, equity, and inclusiveness

Janet Callahan, Dean
College of Engineering
Michigan Tech


Simon Carn: Sniffing Volcanoes from Space

Lava Lake on Mount Nyiragongo, an active stratovolcano in the Democratic Republic of Congo. Photo credit: Simon Carn

Simon Carn and Bill Rose generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

What are you doing for supper this Monday night 2/15 at 6 ET? Grab a bite with Dean Janet Callahan and Volcanologist Simon Carn, Professor, Geological and Mining Engineering and Sciences (GMES).

Also joining in will be GMES Research Professor Bill Rose, one of the first in volcanology to embrace satellite data to study volcanic emissions and is a well-recognized leader in the field. 

Professor Simon Carn in the field at Kilauea volcano (Hawaii) in 2018 (with lava in the background).

Prof. Carn studies carbon dioxide and sulfur dioxide emissions from volcanoes, using remote sensing via satellite.

His goal: improved monitoring of volcanic eruptions, human health risks and climate processes—one volcanic breath at a time.

“Volcanology—the study of volcanoes—is a truly multidisciplinary endeavor that encompasses numerous fields including geology, physics, chemistry, material science and social science,” says Carn.  

Carn applies remote sensing data to understand the environmental impacts of volcanic eruption clouds, volcanic degassing, and human created pollution, too.

“Sulfur dioxide, SO2, plays an important role in the atmosphere,” he says. “SO2 can cause negative climate forcing. It also impacts cloud microphysics.” 

Professor Bill Rose

Many individual particles make up a cloud, so small they exist on the microscale. A cloud’s individual microstructure determines its behavior, whether it can produce rain or snow, for instance, or affect the Earth’s radiation balance.

“During Husky Bites I’ll discuss volcanic eruptions and their climate impacts, he says. “I’ll describe the satellite imagery techniques, and talk about the unique things we can measure from space.”

Carn was a leading scientist in an effort to apply sensors on NASA satellites, forming what is called the Afternoon Constellation or ‘A-Train’ to Earth observations. “The A-Train is a coordinated group of satellites in a polar orbit, crossing the equator within seconds to minutes of each other,” he explains. “This allows for near-simultaneous observations.”

Volcanic glow in Ambrym, volcanic island in Malampa Province in the archipelago of Vanuatu. Photo credit: Simon Carn

The amount of geophysical data collected from space—and the ground—has increased exponentially over the past few years,” he says. “Our computational capacity to process the data and construct numerical models of volcanic processes has also increased. As a result, our understanding of the potential impacts of volcanoes has significantly advanced.”

That said, “Accurate prediction of volcanic eruptions is a significant challenge, and will remain so until we can increase the number of global volcanoes that are intensively monitored.”

Carn is the principal investigator on a project funded by NASA, “Tracking Volcanic Gases from Magma Reservoir to the Atmosphere: Identifying Precursors, and Optimizing Models and Satellite Observations for Future Major Eruptions.”

He is a member of the International Association of Volcanology and Chemistry of the Earth’s Interior, and the American Geophysical Union. He served on a National Academy of Sciences Committee on Improving Understanding of Volcanic Eruptions.

Here’s another look at Ambrym. Photo credit: Simon Carn

Carn has taught, lectured and supervised students at Michigan Tech since 2008 and around the world since 1994 at the International Volcanological Field School in Russia, Cambridge University, the Philippines Institute of Volcanology and Seismology and at international workshops in France, Italy, Iceland, Indonesia, Singapore and Costa Rica.

“After finishing my PhD in the UK, I worked on the island of Montserrat (West Indies) for several months monitoring the active Soufriere Hills volcano. This got me interested in the use of remote sensing techniques for monitoring volcanic gas emissions. I then moved to the US for a postdoc at NASA Goddard Space Flight Center, using satellite data to measure volcanic emissions.

Dr. Carn during a research trip to Vanuatu in 2014. The Republic of Vanuatu is an island nation in the South Pacific Ocean, home to several active volcanoes.

While there, I started collaborating with the Michigan Tech volcanology group, including Dr. Bill Rose.”

Rose, a research professor in the Department of Geological and Mining Engineering and Sciences at Michigan Tech, was once the department chair, from 1991-98.

 “Houghton, where Michigan Tech is located, is really an important place for copper in the world,” he says. There is a strong relationship between the copper mines here and volcanoes. We live on black rocks that go through the city and campus, some jutting up over the ground. Those rocks, basalt, are big lava flows, the result of a massive volcanic eruption, a giant Iceland-style event.”

“Arguably, Michigan Tech owes its beginning to volcanic activity, which is ultimately responsible for the area’s rich copper deposits and the development of mining in the Keweenaw,” he says.

“I was very much aware of the volcanic context when I arrived in Houghton as a young professor,” adds Rose. “I had a dual major in geography and geology, but the chance to work in an engineering department sounded good to me. It gave me a chance to go outside, working hands-on in the field.”

Rose did everything he could to get his students to places where they could be immersed in science. For many geology graduates, those trips were the highlight of their Michigan Tech education.

“This is a view of our helicopter landing in the crater at El Chichon, Mexico,” says Prof. Bill Rose. “Simon asked me to share this image and talk about it during Husky Bites.”

“I always took students with me on trips,” says Rose. “That was my priority. After all, the best geoscientists have seen the most rocks. We went all over the world, looking at volcanoes, doing research, and going to meetings,” he says. “I usually took more students with me than I had money for.”

“Back in the late 1980s, this photo was taken in the field in Guatemala (note the chicken!). I was talking to a witness from and eruption in 1929, and showing him photos I had of that event,” says Rose.

Not all students could afford to travel, however. So when Bill (partially) retired in 2011, he decided to do something about that. “My dream was to create a quarter-million- dollar fund for student travel,” he says. He launched the Geoscience Student Travel Endowment Fund with a personal donation of $100,000.

Students take part in one of the hundreds of field studies led by Dr. Bill Rose.

In 2004 Rose started the Peace Corps Master’s International Program at Michigan Tech, now  a graduate degree in Mitigation of Geological Natural Hazards, a program with strong connections with Central American countries and Indonesia. He also developed Keweenaw Geoheritage, in hopes of broadening geological knowledge of the region and of Earth science in general.

His work during his 50 years at Michigan Tech includes volcanic gas and ash emission studies, including potential aircraft hazards from volcanic clouds.

Prof. Rose, what accomplishment are you most proud of?

“My students. I treasure the time I have spent with them. I am laid back. I have been able to work with wonderful students every day of my 45 years at Michigan Tech, thousands of students. My style with these fine people is to give them hardly any orders. I encouraged them to follow their nose and network with each other.”

Last winter Dr. Carn and his kids built a ‘snowcano’ in their yard!
Prof. Rose and then graduate student Taryn Lopez, now Assistant Research Professor at University of Alaska Fairbanks Geophysical Institute.

Professor Carn, when was the moment you knew volcanology was for you?

“The first active volcano I encountered was Arenal in Costa Rica during my travels after finishing high school. However, I think the point that I first seriously considered volcanology as a career was during my MS degree in Clermont-Ferrand, France. The first field trip was to Italy to see the spectacular active volcanoes Etna, Stromboli and Vesuvius.”

Simon Carn on Yasur volcano, Vanuatu in August 2014. “We were measuring the volcanic gas emissions from Yasur, one of the biggest sources of volcanic gas on Earth.We were specifically interested in measuring the emissions of carbon dioxide from the volcano, to improve estimates of global volcanic CO2 emissions”

What do you like most about volcanology?

“Studying volcanoes is undeniably exciting and exotic. We are lucky to visit some spectacular locations for fieldwork and conferences. New eruptions can occur at any time, so there’s always something new and exciting to study. We are also fortunate in that it is relatively easy to justify studying volcanoes (e.g., to funding agencies), given their potentially significant impacts on climate, the environment and society.”

Q: Tell us about this photo of your grandfather. Was he a volcanologist, too?

“My grandfather (John Gale) at Vesuvius in 1943.”

“My grandfather is standing at the foot of Mt. Vesuvius. He wasn’t a volcanologist, though he was a high school science teacher and a conservationist. The photo of Vesuvius was always one of his favorites, from a time when photographs were quite rare, and he often showed it to me in my youth.”