Category: Research

TECH SCEnE Offers the Best of Both Worlds in Michigan’s Upper Peninsula

Keweenaw Bay Indian Community tribal members share their knowledge, wisdom, and culture with TECH SCEnE REU students. Apply for TECHSCEnE Summer 2022 by March 15 at https://www.techscene.mtu.edu. Tentative program dates are June 3, 2022- July 29, 2022. Tribal college, community college or university students, women and students from underrepresented backgrounds are all encouraged to apply.

What are you doing this Summer 2022? Want to combine cutting-edge engineering research with direct community involvement and impact? With a generous stipend, travel allowance, plus all expenses paid for 8 weeks?

Samantha Haynes, future biomedical engineer, spent 8 weeks as a TECH SCEnE REU researcher last summer.

Biomedical engineering student Samantha Haynes decided to immerse herself in something entirely new via TECH SCEnE, a National Science Foundation Undergraduate Research Experience (REU) at Michigan Technological University. Haynes came all the way from Arlington, Virginia, where she studies biomedical engineering at Virginia Tech.

The 8-week, all-expense paid program offered at Michigan Tech is called TECH SCEnE (short for Technology, Science and Community Engagement in Engineering). Haynes stayed on campus, went on outdoor trips throughout the Keweenaw Peninsula, guided by the Keweenaw Bay Indian Community, and conducted hands-on research in campus labs alongside a faculty mentor.

TECH SCEnE research projects include water quality testing for heavy metal contamination, smart adhesives for underwater applications, remote monitoring and mobile robots, simulating daylight for hatcheries, and in vitro modeling of the impact of heavy metals.

Samantha is seventh from the left. TECH SCEnE stands for Technology, Science and Community Engagement in Engineering

In addition to hands-on laboratory experience, Haynes and her fellow students took plenty of field visits to the beautiful lakeshores of Lake Superior and Keweenaw Bay. Application deadline for Summer 2022 is March 15. Tentative program dates are June 3, 2022- July 29, 2022.

This year is forecast to be outstanding for viewing the Northern Lights in the Upper Peninsula of Michigan. Located just 20 minutes or so from the Michigan Tech campus, McLain State Park on Lake Superior is a great potential viewing spot!

Haynes pioneered research on heavy metal contamination in the soil and wild rice beds around the Keweenaw last summer as an undergraduate researcher taking part in TECH SCEnE. She also worked alongside members of the Keweenaw Bay Indian Community (KBIC), her fellow REU students, and other volunteers to plant over 75 trees, build hoops houses, harvest foods, and upkeep a large community garden, the tribe’s People’s Garden.

Wild rice, known as manoomin, the good berry, is both a spiritual and nutritional staple of the Keweenaw Indian Community.

Samantha, what did you like most about TECH SCEnE?

I applied to TECHScENE REU because I thought the internship was very unique. I was excited to have the opportunity to work in Michigan and learn about the local Indian community. I personally value diversity and learning about different communities very much, so I appreciated that this type of internship existed. I’m also passionate about creating positive social change, helping to protect the environment, and using science to bridge gaps in education and educate the public on pressing issues.

What was the best part?

Samantha and fellow volunteers tending to plants in one of the many Hoop Houses of the Keweenaw Bay Indian Community People’s Garden

Out of all the experiences activities we did throughout TECH ScENE, building relationships with my fellow peers, mentors, and the Native American community was my favorite part.

What was the most challenging aspect?

The unlearning process of everything I thought I knew about Native Americans. We participated in weekly workshops to unlearn false, preconceived ideas and to learn factual information about Native American tribes and tribal members, especially those we were working with as part of TECH SCEnE. 

“Boozhoo! Welcome to our wellness trail,” says this sign, located on Keweenaw Bay Indian Community tribal land. Take a moment to learn a few words of the Ojibwe language. “Miikaans means “trail”. “Aki” means Earth. And “boozhoo!” means “greetings!” or “hello!”

What next? What are your future plans?

Currently I am a junior in biomedical engineering, so the next step is to secure another internship for summer 2022, in order to gain more experience. Once I graduate, I plan to start working and possibly consider graduate school after a year or two.

Samantha’s final presentation, with her TECH SCEnE research mentor, Professor Rupali Datta

Are you an adventurous college student? Want to learn how to use science and technology to benefit both the community and the environment? Apply to TECH SCEnE by March 15. Tribal college, community college or university students, women and students from underrepresented backgrounds are all encouraged to apply. Learn more and apply for free at techscene.mtu.edu.

Research links continents to key transitions in Earth’s oceans, atmosphere and climate

Mountain peaks, glaciers, and prayer flags near the Kunzum La Pass, a high mountain pass connecting the Lahaul and Spiti valleys in the Indian Himalaya. Credit: Timothy Paulsen, UW Oshkosh

A recent study led by University of Wisconsin Oshkosh geologist Timothy Paulsen advances the understanding of the role continents have played in the chemical evolution of Earth’s oceans, with implications for understanding atmospheric oxygenation and global climate oscillations. The research team includes Chad Deering and Snehamoy Chatterjee, Dept. of Geological and Mining Engineering and Sciences at Michigan Technological University, and Jakub Sliwinski and Olivier Bachman, Institute of Geochemistry and Petrology, ETH Zurich.

Tim Paulsen

The team’s research article, Continental Magmatism and Uplift as the Primary Driver for First-Order Oceanic 87Sr/86Sr Variability with Implications for Global Climate and Atmospheric Oxygenation, is featured on the cover of the February issue of GSA Today, published by the Geological Society of America.

The team analyzed a global database of the chemistry of tiny zircon grains commonly found in the Earth’s continental rock record. “We use zircon because it is very resistant to weathering and breakdown over a wide span of environmental conditions and can be dated accurately,” Deering explains. Zircon grains are about the size of the width of human hair; typically around 150microns.

Chad Deering

“Oceans cover 70% of Earth’s surface, setting it apart from the other terrestrial planets in the solar system,” said Paulsen, the lead author on the paper. “Geologists have long recognized that there have been profound changes in ocean chemistry over time.”

Yet there are significant questions about the drivers for changes in ocean chemistry in Earth’s past, especially associated with the ancient rock record leading up to the Cambrian explosion of life approximately 540 million years ago.

“Continents tend to be worn down by weathering and rivers tend to transport this sediment to the oceans, leaving scattered puzzle pieces for geologists to fit together,” said Deering, associate professor of Geological and Mining Engineering and Sciences at Michigan Tech, and coauthor on the paper. “There is increasing evidence that important pieces of the puzzle are found in the ancient beach and river sediments produced through continental weathering and erosion.”

The researchers’ findings, based on an analysis of an exceptionally large zircon data set from sandstones recovered from Earth’s major continental landmasses, may signify key links in the evolution of the Earth’s rock cycle and its oceans.

GSA Today highlights articles that appeal to a broad geoscience audience. On the cover:

“Our results suggest that two major increases in continental input from rivers draining the continents were related to the break-up and dispersal of continents, which caused increased weathering and erosion of a higher proportion of radiogenic rocks and high-elevation continental crust,” Paulsen said.

“Both episodes are curiously associated with snowball Earth glaciations and associated steps in oxygenation of the atmosphere-ocean system. Geologists have long recognized that oceans are required to make continents. It would appear based on our analyses that the continents, in turn, shape the Earth’s oceans, atmosphere and climate.”

This study was funded by University of Wisconsin Oshkosh’s Faculty Development Program.

This news story written by Natalie Johnson, UW Oshkosh Today

For Immediate Release
Contact:
Natalie Johnson, UW Oshkosh
Kim Geiger, Michigan Tech

2022-2023 Michigan Space Grant Consortium Awards

Michigan Space Grant Consortium NASA

A diverse, multitalented group of Michigan Tech students, faculty and staff members have been awarded fellowships and grants totaling an impressive $55,701 from the Michigan Space Grant Consortium (MSGC) for its 2022-23 funding cycle. This funding is sponsored by NASA.

Seismic amplitude-based lahar tracking, agriculture and food security, the effects of heavy metals on vegetation, and job shadowing aerospace and earth systems careers: these are just a few of the exciting, innovative projects that received funding.

The MSGC reflects NASA’s interests and promotes awareness, research and education in “space-related science and technology in Michigan.” To achieve this goal, the consortium not only funds fellowships and scholarships for STEM students, but also financially supports curriculum enhancement and faculty development. The MSGC is also deeply committed to supporting and upholding NASA’s policy of diversity and inclusion.

Congratulations to the winners and best of luck on your projects.

Thank you for representing Michigan Tech and making our University community proud!

Michigan Tech undergraduates who received $4,000 research fellowships are:

  • Brendan Harville (GMES) — “Seismic Amplitude-Based Lahar Tracking for Real-Time Hazard Assessment” with Greg Waite (GMES)
  • Sierra Williams (CFRES) — “Understanding the Controls of Solute Transport by Streamflow Using Concentration-Discharge Relationship in the Upper Peninsula of Michigan” with Fengjing Liu (CFRES)

Michigan Tech graduate students who received $5,000 research fellowships are:

  • Espree Essig (GMES) — “Analyzing the Effects of Heavy Metals on Vegetation Hyperspectral Reflectance Properties in the Mid-Continent Rift, USA” with Chad Deering (GMES)
  • Caleb Kaminski (GMES) — “Investigation of Ground-Penetrating Radar Interactions with Basaltic Substrate for Future Lunar Missions” with Aleksey Smirnov (GMES)
  • Katherine Langfield (GMES) — “Structural Characteristics of the Keweenaw and Hancock Faults in the Midcontinent Rift System and Possible Relationship to the Grenville Mountain Belt” with James DeGraff (GMES)
  • Tyler LeMahieu (CEGE) — “Assessing Flood Resilience in Constructed Streambeds: Flume Comparison of Design Methodologies” with Brian Barkdoll (CEGE)
  • Paolo Rivera Gonzalez (GMES) — “Impacts of La Canícula (“Dog Days of Summer”) on Agriculture and Food Security in Salvadoran communities in the Central American Dry Corridor” with Kari Henquinet (SS)
  • Erican Santiago (BioMed) — “Perchlorate Detection Using a Graphene Oxide-Based Biosensor” with Hyeun Joong Yoon (BioMed)
  • Kyle Schwiebert (Math) — “LES-C Turbulence Models and Their Applications in Aerodynamic Phenomena” with Alexander Labovsky (Math)

Michigan Tech faculty and staff members who received $2,200 or more for pre-college outreach and research seed programs are:

  • Paul van Susante (ME-EM) — Hands-On NASA-Oriented Experiences for Student Groups (HONES): “Lunabotics Competition Robot”
  • Jannah Tumey (Center for Educational Outreach) — “Tomorrow’s Talent Series: Exploring Aerospace & Earth System Careers Through Virtual Job-Shadowing”
  • Xinyu Ye (CEGE) — “Analyzing the Effects of Potential Climate and Land-Use Changes on Hydrologic Processes of Maumee River Watershed Using a Coupled Atmosphere-Lake-Land Modeling System”

By the Graduate School and Shelly A. Galliah.

Samson A. Jenekhe, Michigan Tech Alumnus, Elected to the National Academy of Engineering

Professor Sam Jenekhe’s pioneering polymer research paved the way for commercial OLEDs

Michigan Tech alumnus Samson A Jenekhe ’77 has been elected to the National Academy of Engineering, among the highest professional distinctions accorded to an engineer. Dr. Jenekhe is honored for discovery and understanding of conjugated materials for organic light-emitting diodes (OLEDs) widely used in the commercial sector.

A professor of chemistry and the Boeing-Martin Professor of Chemical Engineering at the University of Washington, Jenekhe studies the fundamental physical and chemical properties of semiconductor materials, as well as their practical applications. Research topics have included organic and flexible electronics, the use of organic light-emitting diodes for lighting and displays, energy storage and conversion systems, semiconducting polymers and polymer-based photovoltaic systems.

Jenekhe is a Chemical Engineer who earned his BS at Michigan Tech and his MS, MA, and PhD at the University of Minnesota. Jenekhe worked as a research scientist for Honeywell, Inc. and later joined the faculty at the University of Rochester, before joining the faculty at the University of Washington in 2000.

He is a fellow of the American Association for the Advancement of Science, the Royal Society of Chemistry and the American Physical Society, which in 2021 also awarded him the Polymer Physics Prize. He also received the Charles M.A. Stine Award for Excellence in Materials Science from the American Institute for Chemical Engineers in 2014.

Read More

Samson A. Jenekhe’s Pioneering Polymer Work Paved the Way for Commercial OLEDs
US Department of Energy: OLED Basics

Watch

Distinguished Chemical Engineering Seminar given by Professor Samson Jenekhe, University of Washington. Held on 2 March 2016 at the Department of Chemical Engineering, Imperial College London.

Play Plastic electronics and photovoltaics video
Preview image for Plastic electronics and photovoltaics video

Plastic electronics and photovoltaics

Zhanping You: Where the Rubber Meets the Road

Professor Zhanping You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. 
Professor Zhanping You

Zhanping You generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan back on Monday, February 21. You can view the YouTube recording of his session to learn something new in just 30 minutes (or so). Here’s the link to watch. Register for future sessions of Husky Bites at mtu.edu/huskybites. Grab some supper, or just flop down on your couch. Everyone’s welcome! It’s BYOC (Bring Your Own Curiosity).

Dr. Zhanping You, a Distinguished Professor of Transportation Engineering in the Department of Civil, Environmental and Geospatial Engineering, uses old tires to make new roads. One of Prof. You’s doctoral students, Dongzhao “Kobe” Jin, joined in to talk about the process.

Kobe Jin

Dr. You works with recycled materials to improve asphalt pavement performance. Crumb rubber, made from scrap tires, is one such material. ”Crumb rubber in asphalt reduces rutting and cracks and extends life, and it lowers noise levels,” he says. 

Scrap tires are plentiful, though not in a good way. “Hundreds of millions of scrap tires are generated in the US every year,” he notes. “Those giant piles of waste tires pose concerns of potential contamination of local groundwater and fire risk.”

You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. “We do it through various experimental and numerical modeling techniques,” You explains. “Our research team has also expanded the work to include field pilot projects, too. Over the past 6-7 years or so, we’ve constructed quite a few roads in Michigan that use recycled tire rubber.” The team works with the Michigan Department of Environment, Great Lakes, and Energy (EGLE) and the EGLE Scrap Tire division, plus road commissions in Dickinson County, Kent County, St. Clair County, Clare County, and Bay County.

“Teaching provides me with broad dimensions to sharpen my research vision, while research helps me develop in-depth understanding so that I can teach better,” Dr. You says.

Another material You and his team employ: pavement rubble. “More than 94% of the roads in the United States are paved with asphalt mix—about 360 million tons each year. In turn, that generates over 60 million tons of old asphalt pavement waste and rubble,” he notes. Recycling these waste materials not only greatly reduces the consumption of neat asphalt mix, it also lowers related environmental pollution, he adds. 

Blending recycled asphalt pavement (RAP) with fresh asphalt mix has presented several challenges for You and his team. “One noticeable issue of using RAP in asphalt pavement is the relatively weaker bond between the RAP and neat asphalt, which may cause moisture susceptibility,” he says. “We have determined that modifying the asphalt mix procedure and selecting the correct neat asphalt can effectively address this concern.” 

Before the recycled asphalt-tire-gravel mix ever makes it outside, You and his research team do plenty of work indoors, using computer modeling and lab tests to make sure they put viable material out in the elements. 

“When crumb rubber is blended into an asphalt binder, the stiffness of the asphalt binder is increased,” You explains. “ A higher mixing temperature is needed to preserve the flowability of asphalt binder. Conventional hot-mix asphalt uses a lot of energy and releases a lot of fumes. To solve this problem we developed a warm mix technology, a foaming process at lower temperatures, that requires less energy and reduces greenhouse gas emissions.” 

You and his group developed and tested several foaming technologies for warm mix asphalt, integrating state-of-the-art rheological and accelerated aging tests, thermodynamics, poromechanics, chemical changes and multi-scale modeling to identify the physical and mechanical properties of foamed asphalt materials. 

You has other solutions in the works, too, including man-made asphalt derived from biomass. “We tried using bio oil (derived from biomass) in asphalt and found it also improved pavement performance,” he says. 

Not even the pandemic can stop the construction of recycled roads in Michigan!
A Michigan Tech research team of students led by Zhanping You tests a new, cooler way to make rubberized asphalt in Michigan’s Upper Peninsula.

“Asphalt made from bio oil can potentially reduce the consumption of petroleum asphalt and lower the production temperature while road rutting resistance can be improved. We actively work with local, state, and national recycling efforts to develop better road materials, using plastics, waste glass, and several other recyclables, too,” he notes. “We hope our efforts will contribute to a circular and low-carbon economy.”

Prof. You, how did you first get into engineering? What sparked your interest?

I got into civil engineering accidentally, but started to love it. When I was little, I had debates with my friends on the possible damage on roads–was it the load or the pressure from the tires?

Hometown, family?

I view Houghton as my hometown now since I have been here almost 17 years, even though I was born and raised in Northwest China.

A lot of testing goes on in Dr. You’s lab at Michigan Tech.

What do you like to do in your spare time?

I love to read books—non-engineering, engineering, history, and literature. I’m also a recently appointed coadvisor to the Michigan Tech student chapter of Society of Asian Scientists and Engineers (SASE). After years of service in various professional groups at Michigan Tech, I believe an organization of Asian students involved in science and engineering is really needed.

Kobe, how did you first get into engineering? What sparked your interest?

Says Kobe: “Dr. You’s humor, lifestyle, rigorous academic attitude, and profound understanding of sustainable pavement all impact me a lot.”

The first time I got interested in engineering was when they were paving the concrete road in my hometown. I became interested in how and why a mix of some aggregate, sand, and water could create such a hard road.

Hometown, family?

My hometown is a small county in Henan Province, China. I have two sisters and I love my family.

Any hobbies? Pets? 

I like cats and basketball (I go by Kobe in honor of my favorite basketball player). I read science fiction books during my spare time.

Read More

Q&A with Research Award Winner Zhanping You
When Rubber Becomes the Road

Kobe enjoys the Houghton Waterfront Park near campus (even in the middle of winter!)

TECH SCEnE: Adventure is Calling Your Name

TECH SCEnE REU 2021 alum Elizabeth Chery studies biomedical engineering at Florida International University, in Miami, Florida.

Want to combine engineering research with direct community involvement and impact? Biomedical engineering student Elizabeth Chery did, and she took the plunge just last summer at a National Science Foundation Undergraduate Research Experience (REU) at Michigan Technological University.

The 8-week, all-expensed paid program is called TECH SCEnE (short for Technology, Science and Community Engagement in Engineering). Chery stayed on campus, went on outdoor trips throughout the Keweenaw Peninsula, guided by the Keweenaw Bay Indian Community, and conducted hands-on research on campus with her team right alongside a faculty mentor.

“I found it very refreshing to be surrounded by nature in Michigan’s Upper Peninsula, and to enjoy endless outdoor activities like fishing, biking, hiking, and going to state parks.”

It was nearing the end of spring 2021. Summer was just around the corner. Chery found herself eager to start applying some of the knowledge she had gained in her college courses out in the real world.

“I wanted to see how what I was learning could connect to my future—or who I could help. I also wanted to get more exposure to research, to find out what it might be like in graduate school,” she explains.

“I have a passion for service, too, so when I discovered TECHSCEnE—an REU that emphasize bi-weekly organic gardening and indigenous culture visits—I was highly motivated to apply. This program was everything I wished for!

“TECH SCEnE is great for any student deciding whether to go into research or industry. There will be a balance of both to help guide you to your decision.”

Elizabeth Chery, TECH SCEnE REU 2021


Elizabeth, what did you like most about TECHSCEnE?

“Being in Houghton I soon discovered my love for the outdoors, and learning about indigenous cultures.”

The beautiful remote location of the program is what I enjoyed the most! I went to school in the big city. People fly to Miami to visit all the trendy hotspots I grew up with as a child. I found it very refreshing to be surrounded by nature, and to enjoy endless outdoor activities like fishing, biking, hiking, and going to state parks.

I liked being around many different kinds of people—and learning how to work together. Although we’re all in the same age group, we came from different parts of the United States, each with our own different social norms and upbringing. Despite TECHSCEnE’s overall goal—to consider research as a career—the faculty did a phenomenal job of educating us about team building. I met great people and we made tons of special memories together! We went on numerous field trips, some centered on career information, and others focused on social skills. Both are essential components for working in the real world. 

Elizabeth Chery presents her research results during the final days of her TECH SCEnE NSF REU at Michigan Tech

What was the most challenging aspect?

“This hiking trip in North Carolina for my birthday (in September) was inspired by the scenic beauty in I enjoyed during TECH SCEnE.”

Staying organized was a definite challenge with all the data we collected during the experiments. It was absolutely imperative that I document and create a daily report, so that I could make a strong bi-weekly presentation to my peers in the TECHSCEnE program. They were not as well-versed in my topic, so I needed to take an abstract idea and relate it to something more common without being too repetitive or complex. Their bi-weekly feedback helped me find the sweet spot of not over-explaining, yet still being clear and understandable.

What next? What are your future plans?

After completing TECHSCEnE, I joined a research lab at my own university to continue my interest in research. I recently added a minor in chemistry to my major, too. My goal for the upcoming summer is to intern for a biomedical technology company or pharmaceutical company. And my future career goal remains the same: to pursue a graduate degree in biomedical engineering with a concentration in tissue engineering. My ultimate goal is to become a physician-scientist.

Are you an adventurous college student? Want to learn how to use science and technology to benefit both community and the environment? Apply to TECH SCEnE by March 15. Tribal college, community college or university students, women and students from underrepresented backgrounds are all encouraged to apply. Learn more and apply for free at techscene.mtu.edu.

Hoda Hatoum: How Can You Mend a Broken Heart? Flow Dynamics in Arrhythmias

Dr. Hatoum and PhD student Brennan Vogl test heart valves for overall performance and energetics, turbulence generated, sinus hemodynamics (aortic and pulmonic), as well as ventricular, atrial, pulmonic, and aortic flows.

Hoda Hatoum shares her knowledge on Husky Bites, a free, interactive webinar this Monday, 2/14 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Dr. Hoda Hatoum

What are you doing for supper this Monday night 2/14 at 6 ET? Grab a bite with Dean Janet Callahan and Hoda Hatoum, assistant professor of Biomedical Engineering at Michigan Tech. She’ll talk about her cardiovascular research along with Brennan Vogl, one of the first PhD students to join her Biofluids Lab in the fall of 2020.

Atrial fibrillation (aka AF or AFib), when the heart beats in an irregular way, affects up to 6 million individuals in the US, a number expected to double by 2030. More than 454,000 hospitalizations with AFib as the primary diagnosis happen each year. Current AF treatment guidelines recommend antiarrhythmic drugs as initial therapy, but their efficacy is limited and comes with the risk of serious adverse effects. Another option, catheter ablation, electrically isolates the pulmonary veins—the most frequent site of AFib triggers—with more success and an excellent safety profile.

Brennan Vogl

“One of my goals in the lab is to evaluate and provide answers to clinicians so they know what therapy suits their patients best,” says Hatoum. During Husky Bites, by way of example, she’ll show us just how AFib ablation impacts the heart’s left atrial flow.

The left atrium is one of the four chambers of the heart, located in the heart’s upper half. It receives oxygenated blood from the lungs, and pumps it down to the left ventricle through the mitral valve. The left ventricle then pumps the oxygen-rich blood to the rest of the body through the aortic valve.

An actual human heart is about the size of your fist, shaped like an upside down pear. Every cell in your body gets blood from your heart (except for your corneas).

Hatoum’s research seeks to better understand flow dynamics of the heart during arrhythmia, as well as the complexity of structural heart biomechanics, prosthetic heart valve engineering, and the structure-function relationships of the heart in both health and disease.  

Hatoum earned her BS in Mechanical Engineering from the American University of Beirut and her PhD in Mechanical Engineering from the Ohio State University (OSU). She was awarded an American Heart Association postdoctoral fellowship, and completed her postdoctoral training at the Ohio State University and at Georgia Institute of Technology before joining the faculty at Michigan Tech.

“One of my goals is to evaluate and provide answers to clinicians so they know what therapy suits their patients best.”

Hoda Hatoum

Why hearts? “It all started with my doctoral program,” Hatoum recalls. “I had the opportunity to work closely with clinicians, to attend their structural heart meetings, and to plan with them the appropriate therapy to be administered for patients. Every patient is very different, which makes the problem exciting and challenging at the same time.”

Now, working in her own Biofluids Lab at Michigan Tech, Hatoum integrates principles of fluid mechanics, clinical expertise with collaborators nationwide (including Mayo Clinic, Ohio State, Vanderbilt, Piedmont Hospital and St. Paul’s Hospital Vancouver), and design and manufacturing–all to find solutions for cardiovascular flow problems. 

Play Biomedical Engineering Biofluids Lab Aortic Valve Models video
Preview image for Biomedical Engineering Biofluids Lab Aortic Valve Models video

Biomedical Engineering Biofluids Lab Aortic Valve Models

These aortic valves open and close based via the contraction of a pump, controlled by a LabView program. See more during Husky Bites!

Hatoum designed and built a pulse duplicator system—a heart simulator—that emulates the left heart side of a cardiovascular system. She also uses a particle image velocimetry system that allows her to characterize the flow field in vessels and organs. Hatoum and her team of students use these devices to develop patient-specific cardiovascular models, conducting in vitro tests to assess the performance and flow characteristics of different heart valves. “We use idealized heart chambers or patient-specific ones,” she notes. “We test multiple commercially available prosthetic heart valves—and our in-house made valves, too.”

From the Biofluids Lab website: a wide array of current commercial bioprosthetic transcatheter mitral valves.

Hatoum and her team design their own heart valve devices. “With the rise of minimally invasive surgeries, the clinical field is moving towards transcatheter approaches to replace heart valves, rather than open heart surgery,” she explains. 

“Currently, transcatheter heart valves are made of biological materials, including pig or cow valves, that are prone to degeneration. This can lead to compromised valve performance, and ultimately necessitate another valve replacement.” To solve this problem, Hatoum collaborates with material science experts from different universities in the US and around the world to utilize novel biomaterials that are biocompatible, durable and suitable for cardiovascular applications. 

Which area of research pulls Dr. Hatoum’s heartstrings the most? “Transcatheter aortic heart valves,” she says. (Look closely at this photo to see the closed leaflets of an aortic valve.)

“With the challenges that come with TAVs, and with the low-risk population targeted, I believe this is an urgent field to look into, so we can minimize as much as possible any adverse outcomes, improve valve designs and promote longevity of the device.”

Congenital heart defects in children are another strong focus for Hatoum and her team. “We devise alternatives for highly-invasive surgeries for conditions such as pulmonary atresia, Kawasaki disease, and more.” Hatoum collaborates with multiple institutions to acquire patient data, then, using experimental and computational fluid dynamics, she examines the different scenarios of various surgical design approaches. “One very important goal is to develop predictive models that will help clinicians anticipate adverse outcomes,” she says.

“In some centers in the US and the world, the heart team won’t operate without engineers modeling for them—to visualize the problem, design a solution better, improve therapeutic outcomes, and avoid as much as possible any adverse outcomes.”

Hoda Hatoum
Dr. Hoda Hatoum grew up in Lebanon. She’s a big fan of road trips.

Brennan Vogl was the first student to begin working with Hatoum in the lab when she arrived at Michigan Tech in 2020. “It is a great pleasure to work with Brennan,” says Hatoum. “He is very responsible and focused. He handles multiple projects, both experimental and computational, and excels in all aspects of them. I am proud of the tremendous improvement he keeps showing, and his constant motivation to do even better.”

Dr. Hatoum, how did you first get into engineering? What sparked your interest?

As a high-school student, I got the chance to go on a school trip to several universities and I was fascinated by the projects that mechanical engineering students did. That was what determined my major and what sparked my interest.

Hometown, family?

I was raised in Kab Elias, Bekaa, Lebanon. It’s about 45 kilometers (28 miles) from the Lebanese capital, Beirut. The majority of my family still lives there.

‘My niece took this image from the balcony of our house in Lebanon, located in Kab Elias. It shows the broad landscape and the mountains, and the Lebanese coffee cup that’s basically iconic.”

What do you like to do in your spare time?

I like to watch TV, read stories (thrillers) and go on road trips.

The sun temple in the Haidara ruins near Kab Elias, believed to date back to the Roman era.
A recent snow in Kab Elias (photo taken within the last week).

How can a student request to join your Biofluids lab?

The student experience is an amazing one, and one that is rewarding. When a student first joins the lab, they do not have any idea about the problem. As they get exposed to it, they add their own perspective. I currently work with two PhD students and two undergraduates. Usually, an email with interest in the research that I do is sufficient. Our lab employs both mechanical engineering students and biomedical engineering students because of our focus on mechanics. 

Brennan, how did you first get into engineering? What sparked your interest?

I first got into engineering when I participated in Michigan Tech’s Summer Youth Program (SYP). At SYP I got to explore all of the different engineering fields and participate in various projects for each field. Having this hands-on experience really sparked my interest in engineering.

Hometown, family?

I grew up in Saginaw, Michigan. My family now lives in Florida, so I get to escape the UP cold and visit them in the warm Florida weather.

Brennan loves to ski in Houghton’s plentiful powder, but he’s an even bigger fan of warm, sunny weather.
Poppy is on the left and Milo is on the right.

Pets? Hobbies?

I enjoy skiing, and I have two Boston Terriers—Milo and Poppy. They live with my parents in Florida, I don’t think they would be able to handle the cold here in Houghton, as much as I would enjoy them living with me.

2022 Design Expo Registration Now Open

Design Expo

The Enterprise Program and College of Engineering are excited to announce the 22nd Design Expo, being held in person from 10 a.m. to 2 p.m. April 21 in the Van Pelt and Opie Library’s first floor.

Design Expo has been expanded to highlight Senior Design/Capstone projects from all areas of the Michigan Tech campus, involving teams from the College of Business, College of Forest Resources and Environmental Science and College of Engineering. 

RSVP for Design Expo Today!

The Michigan Tech community, friends and sponsors are invited to register for this year’s Design Expo.

More than a thousand students in the Enterprise and Senior/Capstone Design programs will come together to showcase their work and compete for awards. In addition, a panel of judges, made up of distinguished corporate representatives, alumni, community members, and Michigan Tech staff and faculty, will be able to critique videos of team projects, solutions and results in advance of the live event, then come to Design Expo to meet the teams and ask any questions in person.

Social Hour and Awards Ceremony

Starting at 2:30 p.m., all student teams, judges, sponsors and friends, and the Michigan Tech campus community are invited to a social hour at the Rozsa Center for the Performing Arts with light refreshments, entertainment and door prizes. Then, at 3:30 p.m., we will begin the Design Expo Awards Ceremony, where student teams will be recognized and more than $3,000 in cash will be awarded.

Both events are free and open to the public. We encourage current and future students, faculty, staff, parents, alumni, families of students, and others to help us celebrate our students and their achievements. Register today to see a schedule of events and attend the 2022 Design Expo.

Become a Judge

Are you interested in judging for the 22nd annual Design Expo? We welcome all Michigan Tech faculty, graduate students, staff, alumni, industry representatives and community members interested in the great work of our students! Find out more at our Become a Judge web page.

This year, judges will have the flexibility to evaluate team videos anytime between noon April 18 and 2 p.m. April 21. Judges will be assigned three to five teams, and will evaluate each team’s video using an electronic ballot. In addition, judges are asked to attend Design Expo in person between 10 a.m. and 2 p.m. April 21 to judge their teams in person. Judges will be selected based on their availability to attend Design Expo in person.

2022 Design Expo Website

For more information on attending and judging Design Expo, visit our website. For questions, please reach out to Briana Tucker at bctucker@mtu.edu.

By The Enterprise Program and College of Engineering.

Kanwal Rekhi Receives Michigan Tech’s Highest Honor: Melvin Calvin Medal of Distinction

Kanwal Rekhi talking with students at Michigan Tech’s Design Expo

Kanwal Rekhi, a visionary who routinely works to forward entrepreneurial skills and educational opportunities at Michigan Tech and around the world, received the Melvin Calvin Medal of Distinction during mid-year Commencement in December. The medal is awarded to individuals associated with Michigan Tech who, like its Nobel prize-winning namesake, have exhibited extraordinarily distinguished professional and personal accomplishments. Rekhi, who earned his master’s in electrical engineering from Michigan Tech in 1969, is managing director of Inventus Capital Partners in California.

The native of Punjab, in what was then British India (now Pakistan), earned a master’s in electrical engineering from Michigan Tech in 1969. In the more than half a century since his time on campus, MTU has never been far from Rekhi’s thoughts–and generosity.

After leaving Michigan Tech, Rekhi worked as an engineer and manager before becoming an entrepreneur. In 1982, he co-founded Excelan, a company that made Ethernet cards to connect PCs to the fledgling Internet. Excelean became the first Indian-owned company to go public in the U.S. In the early 90s, he became a venture capitalist investing in more than 50 startups and sitting on the board of directors of more than 20 companies.

In the past few decades, Rekhi has been a tireless supporter and benefactor to Michigan Tech. He developed and funded the Rekhi Innovation Challenge, a crowdfunding competition to help promote and support student innovation. He provided major funding for the Silicon Valley Experience, an immersive tour during spring break of San Francisco area companies that includes meetings with entrepreneurs and Michigan Tech alumni, and is a sponsor of the 14 Floors Entrepreneur Alumni Mentoring Sessions.

Additionally, every student who has walked the Michigan Tech campus in the past 15 years has passed the Kanwal and Ann Rekhi Computer Science Hall, dedicated in April of 2005.

The Melvin Calvin Medal of Distinction is bestowed on individuals associated with the University who have exhibited especially distinguished professional and personal accomplishments. It is named for 1931 Michigan Tech alumnus Melvin Calvin, who won the Nobel Prize in Chemistry for unraveling the biochemical secrets of photosynthesis. The series of biochemical reactions Calvin identified is known as the Calvin Cycle.

“Kanwal and his accomplishments epitomize the values we share as an institution. His passion for Michigan Tech is unparalleled and he is most deserving of this award.”

Rick Koubek, President, Michigan Technological University

While the Melvin Calvin Medal of Distinction is Michigan Tech’s highest honor, it is far from the first recognition the University has given Rekhi. He has received the Distinguished Alumni Award, the Board of Control Silver Medal, an honorary Doctorate in Business and Engineering, and was inducted into the Electrical Engineering Academy.

Fall 2021 Research Seed Grants for Engineering PIs

Michigan Tech campus and Portage waterway in the autumn.

The Vice President for Research Office announces the Fall 2021 Research Excellence Funds (REF) awards. Congratulations to all the principal investigators!

Thanks to the individual REF reviewers and the REF review panelists, as well as the deans and department chairs, for their time spent on this important internal research award process. Awardees in the College of Engineering include:

Research Seed Grants

By Kathy Halvorsen, Associate Vice President for Research Development.