Tag: education

Husky Bites Returns for Spring Semester 2023

Looking good!

Craving some brain food, but not a full meal? Join us for a Bite!

Grab some dinner with College of Engineering Dean Janet Callahan and special guests at 6 p.m. (ET) each Monday during Husky Bites, a free interactive Zoom webinar, followed by Q&A. Have some fun, learn a few things, and connect with one another as Huskies and friends.

The series features special guests—engineering professors, students, and even some Michigan Tech alumni, who each share a mini lecture, or “bite”.

The Husky Bites Spring 2023 series kicks off Monday (Jan. 23) with “Sliding into the Future of Mont Ripley,” presented by Nick Sirdenis, General Manager, Mont Ripley Ski Area. He will be joined by Dan Dalquist, ski Instructor for the Mont Ripley Ski & Snowboard School, and Josie Stalmack, student president of the Mont Ripley Ski patrol. We’ll hear about some new features at Mont Ripley currently in the planning stage, plus one now in the works. 

“Grab some supper, or just flop down on your couch. Everyone is welcome!”

Dean Janet Callahan

Additional topics and speakers coming up this spring semester include Making Skis (Jeffrey Thompson ‘12); Winter Carnival Geospatial Imagery (Joe Foster); Digging it—Volleyball at MTU (Matt Jennings); Solar Energy in Cold Climates (Ana Dyreson); Money Matters and MTU’s Applied Portfolio Management Program (Dean Johnson); Enterprise—Consumer Products Manufacturing (Tony Rogers); Bio-inspired Designs (Bruce Lee); the A.E. Seaman Museum—120 Years (John Jaszczak); and Birdwatching—Quality of Life (David Flaspohler). 

“We created Husky Bites for anyone who likes to learn, across the universe,” says Dean Callahan. “We aim to make it very interactive, with a ‘quiz’ (in Zoom that’s a multiple choice poll), about every 5-10 minutes. You’re bound to learn something new. We have prizes, too, for attendance.” 

You can also catch Husky Bites each Monday night at 6 pm ET via livestream on our College of Engineering Facebook page.

Get the full scoop and register! Check out recordings of all past sessions, too.

Heard on Husky Bites…

The desire to explore space is what drives me. Very early in my studies I realized that the biggest impediment to space exploration is propulsion. Space is just so big it’s hard to get anywhere. So I dedicated my professional life to developing new space propulsion technologies. There is other life in our solar system. That is a declarative statement. It’s time that we find it. The moons of Jupiter and Saturn hold great promise and I’m determined to see proof in my lifetime.

Prof. Brad King, Mechanical Engineering-Engineering Mechanics

Ever since grade school, I planned on being an engineer. At first, I wanted to work at mission control at NASA. Later, I wanted to make a difference in people’s lives. My mom and sister are nurses, and while I didn’t want to be a medical doctor, making medicines really intrigued me. Now as an engineer I can still make a difference without working directly with patients. I grew up in Pinconning, Michigan. My dad dropped out of school in 8th grade to help on the family farm. My parents instilled in me the importance of education and pushed me to get a bachelor’s degree. They were a little surprised when I took it so far as to get a doctorate degree.

Prof. Caryn Heldt, Chemical Engineering

Growing up I loved looking at a beautiful image of planet Earth, one with a very clear sky and blue water. However, as I began to learn how life on Earth suffers many difficult environmental problems, including air pollution and water contamination, I also learned that environmental engineers can be leaders who help solve the Earth’s most difficult sustainability problems. That is when I decided to become an engineer. The water quality and treatment classes I took were the toughest subjects for me. I had to work the hardest to understand the content. So, naturally, I decided to enter this discipline. And then, there’s our blue planet, the image. Water makes the Earth look blue from space. 

Prof. Daisuke Minakata, Civil and Environmental Engineering

I was born and raised in the City of Detroit. I went to Detroit Public Schools, and when I went to college I had to work to make ends meet. I got a job as a cook in the dorm, and eventually worked my way up to lead cook. I was cooking breakfast for 1,200 people each morning. One of my fellow classmates was studying engineering, too. He had a job working for a professor doing research on storm waves and beaches. I had no idea I could be hired by a professor and get paid money to work on the beach! I quit my job in the kitchen soon after, and went to work for that professor instead. My advice for students just starting out is to spend your first year exploring all your options. Find out what you really want to do. I had no idea I could turn a mechanical engineering degree into a job working on the beach. Turns out, I could⁠—and I’m still doing it today.

Prof. Guy Meadows, Mechanical Engineering, Great Lakes Research Center

I first became interested in engineering in high school when I learned it was a way to combine math and science to solve problems. However, I didn’t understand at the time what that really meant. I thought “problems” meant the types of problems you solve in math class. Since then I’ve learned these problems are major issues that are faced by all of humanity. As a chemical engineer I am able to combine my love of biology, chemistry, physics, and math to create fresh new solutions to society’s problems. One thing I love about MTU is that the university gives students tons of hands-on opportunities to solve real problems, not just problems out of a textbook. These are the types of problems our students will be solving when they go on to their future careers.

Prof. Rebecca Ong, Chemical Engineering

My Dad ran a turn-key industrial automation and robotics business throughout most of my childhood. In fact, I got my first job at age 12 when I was sequestered at home with strep throat. I felt fine, but couldn’t go to school. My Dad put me to work writing programs for what I know now are Programmable Logic Controllers (PLCs); the ‘brains’ of most industrial automation systems. By the time I was in high school I was teaching classes at the local library on computer building, repair, and this other new thing called ‘The Internet’. A career in STEM was a certainty. I ended up in engineering because I like to build things (even if only on a computer) and I like to solve problems (generally with computers and math). 

Prof. Jeremy Bos, Electrical and Computer Engineering

The factors that got me interesting engineering revolved around my hobbies. First it was through BMX bikes and the changes I noticed in riding frames made from aluminum rather than steel. Next it was rock climbing, and realizing that the hardware had to be tailor made and selected to accommodate the type of rock or the type or feature within the rock. Here’s a few examples: Brass is the optimal choice for crack systems with small quartz crystals. Steel is the better choice for smoothly tapered constrictions. Steel pins need sufficient ductility to take on the physical shape of a seam or crack. Aluminum cam lobes need to be sufficiently soft to “bite” the rock, but robust enough to survive repeated impact loads. Then of course there is the rope—what an interesting marvel—the rope has to be capable of dissipating the energy of a fall so the shock isn’t transferred to the climber. Clearly, there is a lot of interesting materials science and engineering going on!

Prof. Erik Herbert, Materials Science and Engineering

Michigan Tech Receives State-of-the-Art Software from Petroleum Experts Limited

MOVE, a geologic modeling software, provides a full digital environment for best practice structural modeling to reduce risk and uncertainty in geological models.

Petroleum Experts Limited has donated the equivalent of $2,764,444.18 to Michigan Technological University. The donation has come in the form of 10 sets of the MOVE suite of programs to be used for education and academic research at the Department of Geological and Mining Engineering and Sciences (GMES).

Petroleum Experts, established in 1990, develops and commercializes petroleum engineering software for the oil industry. Petroleum Experts offers educational licenses to accredited universities that provide geology and/or petroleum engineering related Master and Ph.D. courses.

The state-of-the-art software will be installed in a computer laboratory at GMES, where it will be used in the Structural Geology course (GE3050), required for department undergraduate majors, and in graduate-level courses in structural geology. In addition, the MOVE suite will be utilized in academic non-commercial research on tectonics and structural geology, such as the mapping of the Keweenaw Fault and other complex structural systems in Michigan’s Upper Peninsula.

“The researchers and students at GMES greatly appreciate this generous donation from Petroleum Experts,” says Dr. Aleksey Smirnov, chair of the Department of Geological and Mining Engineering and Sciences at Michigan Tech.

SWE Section Establishes Endowed Scholarship

Congratulations to Michigan Tech’s SWE Section as they announce the creation of a new endowed scholarship!

The Society of Women Engineers (SWE) Section at Michigan Tech is excited to announce the creation of a new endowed scholarship.

“The scholarship is in honor of our alumnae and alumni who have been part of our section since 1976,” says SWE advisor, Associate Teaching Professor Gretchen Hein.

“Eight years ago, in 2014, we hosted the SWE Region H Conference,” Hein explains. “With the funds received from SWE, we began saving with the goal of establishing an endowed scholarship. At long last, we have met our goal and will begin awarding an annual $1,000 endowed scholarship in 2026 to an active SWE section member.”

The new scholarship is in addition to the current section scholarships being awarded annually, notes Hein.

Michigan Tech SWE logo with gear

“As the President of SWE at Michigan Tech, I am excited that our section can provide an additional scholarship opportunity for our members,” said Aerith Cruz, a third year Management Information Systems student. “Our mission is threefold: ‘to stimulate women to achieve their full potential in careers as engineers and leaders, expand the image of the engineering profession as a positive force in improving the quality of life, and demonstrate the value of diversity.’ The establishment of our endowed scholarship demonstrates our dedication to support the future of SWE at Michigan Tech.”

Details regarding the scholarship application process will be announced in 2026. The process will mirror SWE’s current scholarship application where students complete a short essay, have a cumulative GPA of 3.0 or higher, and provide a copy of their resume and a letter of recommendation.

Adds Hein: “Members of Michigan Tech’s SWE section greatly appreciate the guidance and assistance received from Jim Desrochers, director for corporate relations at Michigan Tech, and also Michigan Tech SWE advisor Elizabeth Hoy, director of business and program development at Michigan Tech’s Great Lakes Research Center. And we thank the University and our current and alumni members for their support!”

Would you like to support the SWE Endowed Scholarship?

Donations are welcome! Contribute via check or credit card. Visit mtu.edu/givenow for online donations or to find the mail-in form.

Key points:

  1. Gift Type is “Make a one time gift”
  2. Enter your gift amount
  3. Gift Designation: Select “Other” and enter “SWE Endowed Scholarship #5471″

SWE Congratulates Our Graduating Seniors and Scholarship Recipients

The Society of Women Engineers (SWE) Section at Michigan Tech congratulates our graduating seniors: Sophie Stewart and Audrey Levanen (mechanical engineering) and Kiira Hadden (biomedical engineering). We look forward to hearing from them as alumnae!

The section awarded two scholarships to active upper-division students. We are so proud of the accomplishments of Natalie Hodges (dual major: electrical and computer engineering) and Alli Hummel (civil engineering).

We will be awarding two scholarships in the spring to first- and second-year active members and will be posting the application information during the spring semester.

By Gretchen Hein, Advisor, Society of Women Engineers.

NASA, Artemis and Beyond: Inside Michigan Tech’s Multiplanetary INnovation Enterprise (MINE)

Dr. Paul van Susante’s Planetary Surface Technology Development Lab (PSTDL) at Michigan Tech is home of the Dusty Thermal Vacuum Chamber. It’s about as close to moon conditions as one can get on Earth!
Paul van Susante

Paul van Susante, Assistant Professor, Mechanical Engineering—Engineering Mechanics talks about MINE, the Multiplanetary INnovation Enterprise team at Michigan Tech, along with electrical engineering majors Brenda Wilson and Gabe Allis; and mechanical engineering major Parker Bradshaw.

Wilson, Allis and Bradshaw—along with about 50 other student members of the MINE team—design, test, and implement robotic technologies for extracting (and using) local resources in extreme environments. That includes Lunar and Martian surfaces, and flooded subterranean environments here on Earth. Prof. van Susante helped launch the team, and serves as MINE’s faculty advisor.

The award-winning Enterprise Program at Michigan Tech involves students—of any major—working in teams on real projects, with real clients. Michigan Tech currently has 26 different Enterprise teams on campus, working to pioneer solutions, invent products, and provide services.

“As an engineer, I’m an optimist. We can invent things that allow us to do things that now seem impossible.”

Paul van Susante
Students in the Huskyworks Lab at Michigan Tech work on the T-REX rover (Tethered permanently-shadowed Region Explorer). The T-REX lays down lightweight, superconducting cable connected to a lander, and it won NASA’s top prize—the Artemis Award.

MINE team members build and test robotic vehicles and technologies for clients in government and the private sector. They tackle construction and materials characterization, too. It all happens in van Susante’s Planetary Surface Technology Development Lab (PSTDL) at Michigan Tech, a place where science fiction becomes reality via prototyping, building, testing—and increasing the technology readiness and level of tech being developed for NASA missions. The PSTDL is also known as Huskyworks.

Prior to coming to Michigan Tech, Prof. van Susante earned his PhD and taught at the Colorado School of Mines, and also served as a NASA Faculty Fellow. He has been involved in research projects collaborating with Lockheed Martin, Northrop Grumman, SpaceX, TransAstra, DARPA, NASA Kennedy Space Center, JPL, Bechtel, Caterpillar, and many others.

Prof. van Susante created the Huskyworks Dusty Thermal Vacuum Chamber himself, using his new faculty startup funding. It’s a vacuum-sealed room, partially filled with a simulated lunar dust that can be cooled to minus 196 degrees Celsius and heated to 150 degrees Celsius—essentially, a simulated moon environment. In the chamber, researchers can test surface exploration systems (i.e., rovers) in a box containing up to 3,000 pounds of regolith simulant. It’s about as close to moon conditions as one can get on Earth.

Students in the PSTDL move a testbox into position for testing in the Dusty Thermal Vacuum Chamber.

The NASA Artemis program aims to send astronauts back to the moon by 2025 and establish a permanent human presence. Building the necessary infrastructure to complete this task potentially requires an abundance of resources because of the high cost of launching supplies from Earth. 

“An unavoidable obstacle of space travel is what NASA calls the ‘Space Gear Ratio’, where in order to send one package into space, you need nearly 450 times that package’s mass in expensive rocket fuel to send it into space,” notes van Susante. “In order to establish a long-term presence on other planets and moons, we need to be able to effectively acquire the resources around us, known as in-situ-resource utilization, or ISRU.”

“NASA has several inter-university competitions that align with their goals for their up-and-coming Artemis Missions,” adds van Susante. 

Huskyworks and MINE have numerous Artemis irons in the fire, plus other research projects, too. We’ll learn a lot more about them during Husky Bites.

LUNABOTICS

A peek at the integrated system of MINE’s Lunabotics rover.
Six members of the Michigan Tech Astro-Huskies (plus Dr. van Susante) at NASA Kennedy Space Center Visitor Center, during the 2021-22 Lunabotics competition

Electrical engineering undergraduate student Brenda Wilson serves as the hardware sub-team lead of the Astro-Huskies, a group of 25 students within MINE who work on an autonomous mining rover as part of NASA’s Lunabotics competition. It’s held every year in Florida at the Kennedy Space Center with 50 teams in attendance from universities across the nation. This is the Astro-Huskies’ third year participating in the competition, coming up in May 2023. 

This year the Astro-Huskies are designing, building, testing, and competing with an autonomous excavation rover. The rover must traverse around obstacles such as mounds, craters, rocks; excavate ice to be used for the production of rocket fuel, then return to the collection point. By demonstrating their rover, each team in the competition contributes ideas to NASA’s future missions to operate on and start producing consumables on the lunar surface. 

DIVER

Mechanical engineering undergraduate student Gabe Allis is manager of the MINE team’s DIVER project (Deep Investigation Vehicle for Energy Resources). The team is focused on building an untethered ROV capable of descending down into the Quincy mine to map the flooded tunnels and collect water samples. The team supports ongoing research at Michigan Tech that aims to convert flooded mine shafts into giant batteries, or Pumped Underground Storage for Hydropower (PUSH) facilities.

What it looks like beneath the Quincy Mine in Hancock, Michigan. Illustration courtesy of Michigan Tech’s Department of Geological and Mining Engineering and Sciences.

“Before a mine can be converted into a PUSH facility it must be inspected, and most mines are far deeper than can be explored by a conventional diver,”Allis explains.

“This is where we come in, with a robust, deep-diving robot that’s designed for an environment more unforgiving than the expanse of outer space, and that includes enormous external pressure, no communication, and no recovery if something goes wrong,” he says.  

“Differences in water temperature at different depths cause currents that can pull our robot in changing directions,” adds Allis. “No GPS means that our robot may have to localize from its environment, which means more computing power, and more space, weight, energy consumption, and cooling requirements. These are the sort of problems that our team needs to tackle.”

TRENCHER

During Husky Bites, Bradshaw will tell us about the team’s Trencher project, which aims to provide proof-of-concept for extracting the lunar surface using a bucket ladder-style excavator. “Bucket ladders offer a continuous method of excavation that can transport a large amount of material with minimal electricity, an important consideration for operations on the moon,” Bradshaw says. “With bucket ladders NASA will be able to extract icy regolith to create rocket fuel on the moon and have a reliable method to shape the lunar surface.” Unlike soil, regolith is inorganic material that has weathered away from the bedrock or rock layer beneath.

Parker Bradshaw, also a mechanical engineering student, is both a member of MINE and member of van Susante’s lab, where he works as an undergraduate researcher. “Dr. van Susante is my boss, PI, and Enterprise advisor. I first worked with him on a MINE project last year, then got hired by his lab (the PSTDL) to do research over the summer.”

Bradshaw is preparing a research paper detailing data the team has gathered while excavating in the lab’s Dusty Thermal Vacuum Chamber, with a goal of sharing what was learned by publishing their results in an academic journal.

The PSTDL’s field-rover HOPLITE gets ready for field-test last winter.

“An unavoidable obstacle of space travel is what NASA calls the ‘Space Gear Ratio’, where in order to send one package into orbit around Earth, you need nearly 10 times that package’s mass in expensive rocket fuel to send it into space, and even more for further destinations,” van Susante explains. “So in order to establish a long-term presence on other planets and moons, we need to be able to effectively acquire the resources around us, known as in-situ-resource utilization, or ISRU.”

In the world-class Huskyworks lab (and in the field) van Susante and his team work on a wide variety of projects:

Paul van Susante served as a mining judge during the 2018 Regolith Mining Competition at the NASA Kennedy Space Center Visitor Center

NASA Lunar Surface Technology Research (LuSTR)—a “Percussive Hot Cone Penetrometer and Ground Penetrating Radar for Geotechnical and Volatiles Mapping.”

NASA Breakthrough Innovative and Game Changing (BIG) Idea Challenge 2020—a “Tethered permanently shaded Region EXplorer (T-REX)” delivers power and communication into a PSR, (also known as a Polarimetric Scanning Radiometer).

NASA Watts on the Moon Centennial Challenge—providing power to a water extraction plant PSR located 3 kilometers from the power plant. Michigan Tech is one of seven teams that advanced to Phase 2, Level 2 of the challenge.

NASA ESI Early Stage Innovation—obtaining water from rock gypsum on Mars.

NASA Break the Ice—the latest centennial challenge from NASA, to develop technologies aiding in the sustained presence on the Moon.

NASA NextSTEP BAA ISRU, track 3—”RedWater: Extraction of Water from Mars’ Ice Deposits” (subcontract from principal investigator Honeybee Robotics).

NASA GCD MRE—Providing a regolith feeder and transportation system for the MRE reactor

HOPLITE—a modular robotic system that enables the field testing of ISRU technologies.

Dr. van Susante met his wife, Kate, in Colorado.

Dr. van Susante, how did you first get into engineering? What sparked your interest?

Helping people and making the world a better place with technology and the dream of space exploration. My interest came from sci-fi books and movies and seeing what people can accomplish when they work together.

Hometown and Hobbies?

I grew up in The Netherlands and got my MS in Civil Engineering from TU-Delft before coming to the USA to continue grad school. I met my wife in Colorado and have one 8 year old son. The rest of my family is still in The Netherlands. Now I live in Houghton, Michigan, not too far from campus. I love downhill and x-country skiing, reading (mostly sci-fi/fantasy), computer and board games, and photography.

Dr. van Susante has been a huge help—not just with the technical work, but with the project management side of things. We’ve found it to be one of the biggest hurdles to overcome as a team this past year.

Brenda Wilson

Brenda, how did you first get into engineering? What sparked your interest?

My dad, who is a packaging engineer, would explain to me how different machines work and how different things are made. My interest in electrical engineering began with the realization that power is the backbone to today’s society. Nearly everything we use runs on electricity. I wanted to be able to understand the large complex system that we depend so heavily upon. Also, because I have a passion for the great outdoors, I want to take my degree in a direction where I can help push the power industry towards green energy and more efficient systems.

Hometown, family?

My hometown is Naperville, Illinois. I have one younger brother starting his first year at Illinois State in general business. My Dad is a retired packaging engineer with a degree from Michigan State, and my mom is an accountant with a masters degree from the University of Chicago.

Any hobbies? Pets? What do you like to do in your spare time?

I am an extremely active person and try to spend as much time as I can outside camping and on the trails. I also spend a good chunk of my time running along the portage waterfront, swing dancing, and just recently picked up mountain biking.

I got involved in the DIVER project in MINE, and have enjoyed working with Dr. van Susante. He’s a no nonsense kind of guy. He tells you what you need to improve on, and then helps you get there.

Gabe Allis
Gabe Allis

Gabe, how did you first get into engineering? What sparked your interest?

I first became interested in engineering when my great-uncle gave me a college text-book of his on engineering: Electric Circuits and Machines, by Eugene Lister. I must have been at most 13. To my own surprise, I began reading it and found it interesting. Ever since then I’ve been looking for ways to learn more.

Hometown, family?

I’m from Ann Arbor, Michigan, the oldest of nine. First in my family to go to Tech, and probably not the last. 

Any hobbies? Pets? What do you like to do in your spare time?

I like to play guitar, read fiction, mountain bike, explore nature, and hang out/worship at St. Albert the Great Catholic Church.

“Doing both Enterprise work and research under Dr. van Susante has been a very valuable experience. I expect to continue working in his orbit through the rest of my undergrad degree.”

Parker Bradshaw
Parker Bradshaw

Parker, how did you first get into engineering? What sparked your interest?

I was first introduced to engineering by my dad, who manufactured scientific equipment for the University of Michigan Psychology department. Hanging around in his machine shop at a young age made me really want to work with my hands. What I do as a member of MINE is actually very similar to what my dad did at the U of M. I create research equipment that we use to obtain the data we need for our research, just for me it’s space applications (instead of rodent brains).

Hometown, family?

I grew up in Ann Arbor Michigan, and both of my parents work for the University of Michigan Psychology department. My dad is now retired.

Any hobbies? Pets? What do you like to do in your spare time?

I have a variety of things to keep me busy when school isn’t too overbearing. I go to the Copper Country Community Art Center Clay Co-Op as often as I can to throw pottery on the wheel. I also enjoy watercolor painting animals in a scientific illustration style. Over the summer I was working on my V22 style RC plane project.

Michigan Tech MINE team photo (taken last year). The constraints of the pandemic complicated some of their efforts, yet brought out the best in all of them.

Read more

To the Moon—and Beyond

Watch

Mine Video for Michigan Tech 2022 Design Expo

Bill Rose: Forged in Fire, Sculpted by Ice—Keweenaw Geostories

Erika Vye and Bill Rose on the shore of Agate Harbor, in Michigan’s Upper Peninsula.
Prof. Bill Rose has been studying Central American volcanoes for almost six decades.

Research Professor Bill Rose, Geological and Mining Engineering and Sciences at Michigan Tech, shared his knowledge on Husky Bites, a free, interactive Zoom webinar on Monday, 11/21. Check out the Zoom recording and register for future sessions at mtu.edu/huskybites.

Everyone loves a great geoheritage stories (geostories for short)—and Prof. Bill Rose has many of them. Joining in, colleague, friend and former student, Erika Vye, Geosciences Research Scientist at Michigan Tech’s Great Lakes Research Center.

Together they co-created Keweenaw Geoheritage, an organization that focuses on education and opportunities for sustainable tourism based on significant geologic features and our relationship with them.

Erika Vye works at the Great Lakes Research Center (“and she is GREAT,” says Prof. Bill Rose.)

During Husky Bites, Rose and Vye will share the geostory about Le Roche Vert (the green rock). It’s the legend of a turquoise vein of rock that projected from the shoreline at Copper Harbor into Lake Superior, making for a spectacular site. It was located near the current site of the Copper Harbor Lighthouse, where travelers rounded the Keweenaw on their way westward. Known by Native Americans for centuries, the green rock was widely exaggerated and extolled by certain Voyageurs, who were French Canadian trappers and violent wild explorers. This led to the fame of copper and the public awareness of the possible riches of the Keweenaw, Isle Royale and Lake Superior.

They will also share a geostory about one theory concerning the Keweenaw Fault—the result of an important discussion and argument by geologists, done when geology was a very young science, full of uncertainty (it still is!). And they’ll tell the geostory of Billy Royal, Ed Hulbert and the wild boar—and how they found the C & H Conglomerate in 1868.

An underground concert at Delaware Mine that Bill Rose and Erika Vye organized as a geoheritage event.
“The best geoscientists have seen the most rocks,” he says. He started the Bill Rose Geoscience Student Travel Fund with $100K of his own hard-earned cash.

Vye is dedicated to developing sustainable economic opportunities and enriched relationships with the natural environment through formal and informal place-based education. “The emphasis is on broadening Earth science and Great Lakes literacy through interdisciplinary research and learning, community partnerships, and traditional knowledge,” notes Vye.

“Erika is my friend and she heads up geoheritage awareness efforts. She works with teachers, and is linked with Native Americans, environmentally-relevant groups. She works at the Great Lakes Research Center—she is GREAT,” says Rose.

“Bill is a great friend, mentor, and like family to me,” says Vye.

The two met many years ago at a conference when Vye was working in Munich, Germany. “I’d heard great things about the work he was doing here at Michigan Tech related to natural hazards, Earth science education, and social geology,” she says. “After meeting and learning more, I moved to Houghton a few years later to pursue my PhD with Bill (as his last PhD student!). We have since worked together on advancing geoheritage at the local, regional, and national scale.

“We are all connected by our relationships with geology.”

Erika Vye

“I have buckets of gratitude to work so closely with Bill on this beautiful work that we hope helps our community to thrive.”


“Life on the Keweenaw shore—come and visit paradise.”

Bill Rose

Prof. Rose, how did you first get into engineering?

I am not an engineer. I never got into it. When I arrived in Houghton as a young professor. I had a dual major in geography and geology, but the chance to work as a faculty member in an engineering department sounded good to me. It gave me a chance to go outside, working hands-on in the field, rather than being stuck in the lab. I chaired that engineering department for over eight years.

Prof. Bill Rose and his kin at a recent family feast!

Hometown, family?

Corrales, New Mexico. I have  two sons, five grandchildren. One son is a math teacher, the other a geoenvironmental engineer.

The incredible view from Bill and Nanno Rose’s deck overlooking Lake Superior and the north half of Silver Island.

Any hobbies? Pets? What do you like to do in your spare time?

I have dozens of hobbies, but no pets. As a retired faculty my favorite pastime is no meetings, no deadlines, just creative communications and being outdoors.

“I love being outside,” says Dr. Erika Vye.

Dr. Vye, how did you first get into geology? What sparked your interest?

I started my undergraduate studies at Dalhousie University in the theater department. I needed a science elective and fell into geology; I was hooked and switched majors. I am fascinated by the ways rocks and landscapes share stories about Earth’s history, providing us a window to learn about deep time and how our geologic underpinnings are the foundation for our sense of place, our identity. We are all connected by our relationships with geology.

Learning about Lake Superior and geology on the Inland Seas schooner tour.

Hometown, family?

I grew up on the east coast of Canada, just outside of Halifax, Nova Scotia—I’ve moved from one beautiful peninsula to another! My parents still live there, and I have a brother, niece and nephew that live in New York City. I now live in Copper Harbor with my partner Steve; a small town of 100 folks in the winter is very much another beautiful family I am grateful to be a part of.

Water Walkers walking to Copper Harbor from Sand Point lighthouse

Any hobbies? Pets? What do you like to do in your spare time?

I love gardening, trail running, and am working toward my 200-hour yoga certification to deepen the practice for myself. I am honored to participate in local Water Walks held annually in our community. This Anishinaabe water ceremony is generously shared with our community by KBIC Water Protectors to raise awareness about the importance of water and the need for protection and healing of our water relationships.

Geostory Videos

Read More

Sniffing Volcanoes from Space

EARTH Magazine book review: “How the Rock Connects Us” shares copper country geoheritage

Forged in Stone and Fire

GLRC Summer and Fall 2022 Student Awards

Please join the Great Lakes Research Center (GLRC) in congratulating the Summer and Fall 2022 GLRC Student Research and Travel Grant recipients.

The GLRC student grants are intended to provide undergraduate and graduate students advised by GLRC members an opportunity to gain experience in writing competitive grants, to perform research they would not be able to attempt due to funding limitations, or to travel to a professional conference to present a poster or paper about their research.

Student grants also provide research seed data for advisors to use in pursuing externally funded research support and travel grants help amplify areas of research expertise at Michigan Tech. Funded students are expected to participate/volunteer for at least one GLRC activity during the grant period.

Student Research Grant recipient:

Student Travel Grant recipients:

  • Timothy Stone, M.S. student — Social Sciences
    • GLRC member advisor: Donald Lafreniere
    • Attending: 2022 Social Sciences History Association Annual Conference
    • Presentation: “Exploring the Built and Social Determinants of Health in a 20th Century Industrial City”
  • Mai Anh Tran, Ph.D. student — College of Forest Resources and Environmental Science 
    • GLRC member advisor: Valoree Gagnon
    • Attending: History of Science Society 2022 Annual Meeting – Sustainability, Regeneration, and Resiliency
    • Presentation: “Tracing the Resilience Concept Through the History of Science and the Lens of Indigenous Knowledge”
  • Tessa Tormoen, B.S. student — Biological Sciences
    • GLRC member advisor: Jill Olin
    • Attending: The Wildlife Society National Conference 2022
    • Presentation: “Using DNA Metabarcoding to Evaluate Dietary Resource Partitioning Among Two Sympatric Tilefish”
  • Emily Shaw, Ph.D. student — Civil, Environmental, and Geospatial Engineering
    • GLRC member advisor: Noel Urban
    • Attended: 2022 American Chemical Society Fall Meeting – Sustainability in a Changing World
    • Presentation: “Toxicity in Fish Tissue: Redefining Our Understandings by Quantifying Mixture and Combined Toxicity”
  • Enid Partika, Ph.D. student — Civil, Environmental, and Geospatial Engineering
    • GLRC member advisors: Judith Perlinger, Noel Urban 
    • Attending: Dioxin 22 – 42nd International Symposium on Halogenated Persistent Organic Pollutants 
    • Presentation: “Filling the Data Gap on Responses of Fish PCB Content to Remedial Actions in Torch Lake, Michigan”
  • James Juip, Ph.D. student — Social Sciences
    • GLRC member advisor: Donald Lafreniere 
    • Attending: Social Science History Association Annual Meeting – Reverberations of Empire: Histories, Legacies & Lineages 
    • Presentation: “Utilizing HSDIs to Support Community Engaged Interdisciplinary Education and Heritage Interpretation”
  • John McCall, M.S. student — Biological Sciences
    • GLRC member advisor: Gordon Paterson
    • Attending: The Wildlife Society Annual Conference
    • Presentation: “Evaluating Genotoxicity of Mine Tailings on Two Game Fish in a Spawning Reef in Lake Superior (Michigan)”

The GLRC awarded travel grants to the following students attending COP27, in Sharm El-Sheikh, Egypt, with Sarah Green (Chem):

  • Rose Daily, Ph.D. student — Civil, Environmental and Geospatial Engineering, speaking on the U.S. Center Panel on the topic of “Climate Education in the US”
  • Ayush Chutani, Ph.D. student — Mechanical Engineering-Engineering Mechanics, participating in U.N. side event “Climate Leadership Across Generations”
  • Katherine Huerta-Sanchez, M.S. student — Social Sciences, presenting “Voices and Visions: The Art and Science of Climate Action. Youth Environmental Alliance in Higher Education (YEAH ) and PEACE BOAT US”
  • Anna Kavanaugh, B.S. student — Social Sciences, presenting “From the Roots Up: Community Solutions for Reducing Food Waste”
  • Zachary Hough Solomon, M.S. student — Social Sciences, presenting “The Knowledge and Policy Disconnect: Using Local Knowledge to Inform Climate Science”

GLRC Student Travel Grant applications are accepted anytime and will be reviewed on the last Friday of each month. Applications must be submitted at least two weeks in advance of travel. GLRC Student Research Grant applications are accepted three times each year — Nov. 1, March 1 and July 1.

By the Great Lakes Research Center.

Educating the Next Generation of Climate Leaders with participating institution logos.
Panel of four people and host at the podium.
Climate action panel with Rose Daily speaking.
Rose Daily, Graduate Student, Michigan Technological University, speaking on stage.
Panel audience asking questions.
Climate Change Education panel of four people on stage.

Related

John Vucetich: Restoring the Balance—Wolves and Our Relationship with Nature

Wolves on a wilderness island illuminate lessons on the environment, extinction, and life. Photo credit: John Vucetich

John Vucetich shares his knowledge on Husky Bites this Monday, November 7 at 6 pm ET. Learn something new in just 30 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Michigan Tech Distinguished Professor John Vucetich leads the the longest running predator-prey study in the world.

Restoring the Balance: What are you doing for supper this Monday 11/7 at 6 pm ET? Grab a bite on Zoom with Dean Janet Callahan and John Vucetich, Distinguished Professor, College of Forest Resources and Environmental Science at Michigan Tech.

Prof. Vucetich studies the wolves—and the moose that sustain them—of the boreal forest of Isle Royale National Park. It’s something he’s done for more than a quarter century. He joined Michigan Tech’s Isle Royale Wolf-Moose study in the early 1990s as an undergraduate student majoring in biological science. He went on to earn a PhD in Forest Sciences at Tech in 1999.

Three years later Vucetich began leading the study along with SFRES research professor Rolf Peterson, who is now retired. This year will be the study’s 66th year monitoring wolves and moose on Isle Royale—the longest running predator-prey study in the world. (Their project website is isleroyalewolf.org.)

“Much of my work is aimed at developing insights that emerge from the synthesis of science and ethics,” says Vucetich. “Environmental ethicists and environmental scientists have a common goal, which is to better understand how we ought to relate to nature,” he adds. “Nevertheless, these two groups employ wildly different methods and premises.”

During Husky Bites, Vucetich will read from his book, Restoring the Balance: What Wolves Teach Us About Our Relationship with Nature, published by Johns Hopkins University Press in 2021. 

Restoring the Balance : What Wolves Tell Us About Our Relationship with Nature, by John Vucetich (Johns Hopkins University Press, 2021).

“It’s a book about wolves,” he says, simply, “and how humans relate to wolves.”

It’s also an exhilarating, multifaceted, thought-provoking read. Vucetich combines environmental philosophy with field notes chronicling his day-to-day experience as a scientist. Examining the fate of wolves in the wild, he not only shares lessons learned from these wolves, but also explains their impact on humanity’s fundamental responsibilities to the natural world.

“Science can never tell us what we ought to do or how we ought to behave,” says Vucetich. “Science only describes the way the world is. Ethics by itself can’t tell us what to do, either. Ethics needs science—facts about the world—to be properly informed.”

“John is a real field man, a dauntingly quantitative biologist, and a dedicated student of logic:  the coalescence of this whole emerges as a leading conservation ethicist,” writes David W. Macdonald, professor of wildlife conservation at Oxford University, in the foreword of Restoring the Balance. “In this book, John Vucetich asks you to imagine yourself as a young wolf, dreaming of attempting to kill your first moose, ten times your size, using only your teeth,” adds Macdonald. “He asks the big question (bravely, for a hard-nosed quantitative biologist in a profession neurotic about anthropomorphism) what is it like to be a wolf? He thinks, as do I, that this is a more sensible question than you might suspect, in part because it turns out there’s so much similarity between us and them.”

“The island is Isle Royale, a wilderness surrounded by the largest freshwater lake in the world. I make these observations from the Flagship, an airplane just large enough for a pilot and one observer. After the flight, questions hack their way through the recursive web of dendrites that is my consciousness. What is the life of a wolf like? What is it like to be a wolf? Those questions are too presumptuous. The first questions should penetrate down to the foundation: Of all the millions of species on planet Earth, why wolves, why not some other?” 

John Vucetich, Restoring the Balance

Joining in: Becky Cassel grew up in the Upper Peninsula of Michigan. She teaches Earth Sciences in Pennsylvania.

Joining in during Husky Bites will be Becky Cassel. She teaches Earth science and environmental science to ninth graders at a high school outside of Hershey, Pennsylvania  (Lower Dauphin School District).

“I have not met Dr. Vucetich in person. As a teacher, I have spent many years using the Isle Royale Wolf-Moose study to talk about populations and predator/prey relationships in my classroom,” says Cassel.  

“For Christmas last year I gave my father a copy of Restoring the Balance. When he was done reading it, both my husband and I read it. It was riveting. I emailed Dean Callahan to suggest inviting Dr. Vucetich onto Husky Bites. The Michigan Tech Wolf-Moose study is found in every biology textbook used today. I knew many Husky Bites watchers would be familiar and interested in the topic.”

The view from Flagship, over Lake Superior.

Excerpt

Prof. John Vucetich at work on Isle Royale. “What does a healthy relationship with the natural world look like? Are humans the only persons to inhabit Earth—or do we share the planet with uncounted ‘nonhuman persons’?’

During Husky Bites, Prof. Vucetich will read passages from Restoring the Balance. The passage below is taken from the book’s first chapter, “Why Wolves?”

February 18. We saw what they smelled—a cow moose and her calf, who had themselves been foraging. It didn’t look good for the cow and calf right from the beginning. The calf was too far away from her mother, and they may have had different ideas about how to handle the situation. The wolves rushed in. The cow turned to face the wolves, expertly positioned between the wolves and her calf, but only for a second. The calf bolted. After a flash of confusion’s hesitation, the cow pivoted and did the same. Had she not, the wolves would have rushed past the cow and bloodied the snow with her calf. The break in coordination between cow and calf put four or five wind-thrown trees lying in a crisscrossed mess between the cow and her tender love. The cow hurled herself over the partially fallen trunks that were nearly chest-high on a moose. She caught up with her frantic calf before the wolves did. Then the chase was on, led by the least experienced of them all—the calf. The cow, capable of running faster, stayed immediately behind the calf, no matter what direction the terror-ridden mind of that calf decided to take. Every third or fourth step the cow snapped one of its rear hooves back toward the teeth of death. One solid knock to the head would rattle loose the life from, even, a hound of hell. After a couple of minutes and perhaps a third of a mile, the pace slowed. By the third minute everyone was walking. The calf, the cow, and the wolves. The stakes were high for all, but not greater than the exhaustion they shared. Eventually they all stopped. Not a hair’s width separated the cow and calf, and the wolves were just 20 feet away. The cow faced the wolves. A few minutes later the wolves walked away. By nightfall Chippewa Harbor Pack had pushed on another six miles or so, passing who-knows-how-many-more moose. Their stomachs remained empty.

Praise for Restoring the Balance:

“John Vucetich creates a masterful blend of memoir, science, and ethics with a message that is both timely and timeless.” — Michael Paul Nelson, Professor of Environmental Ethics and Philosophy, Oregon State University

“This exhilarating book is a remarkable triumph―beautifully crafted.” — David W. Macdonald, Professor of Wildlife Conservation, University of Oxford

“This book is juicy with field notes―the stories of charismatic individual wolves like the Old Gray Guy, and complex science made understandable and seductively enticing to the reader with even the tiniest interest in wolf survival and natural history.” — Nancy Jo Tubbs, Chair, Board of Directors, International Wolf Center

Becky visited Isle Royale.

Becky, how did you first get into teaching? What sparked your interest?

I taught sailing lessons as a summer job in Escanaba, Michigan, while pursuing a degree at Miami of Ohio. After graduating and working for a year I realized that I really enjoyed teaching much more than my chosen career. I decided to go back and earn my Earth science teaching certification.

As a self-professed “outdoor girl”, I love all things Earth science. I was amazed how much I enjoyed every single Earth science class I needed to take in order to earn my science teacher certificate. I had been working in Pennsylvania at the time, so I earned my teacher certificate in Pennsylvania, and then was hired to teach there, too. I met my husband, Craig, and we decided to stay in Pennsylvania. Of course we travel to Escanaba every summer to get my UP fix!

Hometown, family?

My hometown is Escanaba, Michigan; however my parents are from the Philadelphia area. My father chose Michigan Tech for college (Tech Alum ’59) and fell in love with the area. The Cliff Notes version is that he returned to the East, married my mother, and convinced her to move to the UP.  I was 2 months old at the time. I have an older sister (also a teacher) who lives in central Maine.

Craig and Becky Cassel enjoy bicycle touring in Michigan’s Upper Peninsula (the UP).

My husband Craig is a biology and anatomy teacher, and we met while teaching in the same school. We’ve driven into school together every day since then. He just retired at the end of last year, so now I drive in on my own.

We have two children. Our son, Elliot, just graduated from Virginia Tech last year and returned to college this year to earn his Earth science teacher certificate. Our daughter, Avery, chose to go to Michigan Tech like her grandfather, and entered the environmental engineering program. She has found her “outdoor people” at Michigan Tech.

Any hobbies? Pets? What do you like to do in your spare time?

I guess my biggest hobby is bicycle touring, but we also hike, run, and spend time outdoors. I grew up sailing in Esky, but sailing in Pennsylvania is NOT like sailing on the Great Lakes so I don’t do much of that except when I return to Escanaba.

My husband’s family owns a farm outside of Hershey, Pennsylvania, and we live on one end of the farm. This has allowed us to raise our children as outdoor lovers. We also have a beagle (Henry) and several chickens and rabbits. The farm itself is a thoroughbred racehorse farm, operated by my in-laws. We aren’t involved in horse training; instead, we grow grapes. We planted and opened a vineyard and winery in 2008, so that’s our other “hobby”.

Read more:

Preparing To Live With Wolves, By John Vucetich, January 16, 2012, The New York Times

Ecologist Ponders Fairness To Wildlife And The Thoughts Of Moose, By Rachel Duckett, December 21, 2021, Great Lakes Echo

What Wolves Tell Us about Our Relationship with Nature, by Marc Bekoff Ph.D., October 21, 2021, Psychology Today

Isle Royale Winter Study: Good Year for Wolves, Tough One for Moose, by Cyndi Perkins, August 24, 2022 Michigan Tech News

Engineering Day at Lake Linden Elementary

Lake Linden - Hubbell Elementary School exterior with bicycles.

WLUC TV6 and the Daily Mining Gazette covered Engineering Day at Lake Linden Elementary School. The event was hosted by Michigan Tech’s Society of Women Engineers and Engineering Ambassadors Program on October 28, 2022.

Gretchen Hein (MMET) and undergraduate students Audrey Levanen and Julia Westfall (both mechanical engineering) were quoted by TV6. 

Hein and undergraduate students Natalie Hodge (electrical and computer engineering) and Sam Jager and Robert Eckright (both mechanical engineering) were quoted by the Gazette.

Jaclyn Johnson (ME-EM) was mentioned in both stories.

The combined group engaged students with a variety of engineering activities. This included using tin foil boats to showcase buoyancy, making small-scale roller coasters, and even using batteries to make “robots” jump.

Academy for Engineering Education Leadership Inducts Three New Members

Sheryl Sorby, William Predebon, and Debra Larsen were inducted into the Michigan Tech Academy of Engineering Education Leadership on October 28, 2022.
Dr. Debra Larson

On Friday, October 28, the Michigan Tech community gathered to learn from, celebrate, and induct three outstanding educators into the Academy for Engineering Education Leadership. Janet Callahan, dean of the College of Engineering, hosted the induction ceremony.

Inductees were Debra Larson, PhD, Provost & Vice President for Academic Affairs, California State University-Chico; William Predebon, PhD, ME-EM Emeritus, Michigan Technological University; and Sheryl Sorby, PhD, Professor of Engineering Education, University of Cincinnati.

Dr. Bill Predebon

Creating pathways for all students to succeed is a primary focus for Debra Larson. She is a highly effective problem solver and resilient leader who respects shared governance and the diversity of experiences. She is passionate about innovating and delivering high-quality and hands-on education that prepares each generation of graduates for success and well-being. Dr. Larson earned her BS and MS in Civil Engineering from Michigan Tech, and her PhD in Civil Engineering from Arizona State University.

Encouraging faculty, staff and students to innovate, push boundaries, take risks, and be entrepreneurial was a daily activity for Bill Predebon while serving as ME-EM department chair for 25 years. Under his watch, the ME-EM department made tremendous strides in conducting interdisciplinary research, growing the doctoral program, expanding research funding and labs, and advancing the curriculum. Dr. Predebon earned his BS in Engineering Science at University of Notre Dame, and his MS and PhD in Engineering Mechanics from Iowa State University.

Dr. Sheryl Sorby

Serving as founding chair of the Department of Engineering Fundamentals at Michigan Tech, Sheryl Sorby developed and delivered a highly supportive first-year program—a legacy effort that remains to this day. Her groundbreaking research and outreach, focused on helping people across age groups and cultures to develop their 3-D spatial skills, has enabled educators to develop the capacity of students worldwide. Her curriculum is used by nearly 30 engineering programs in the United States. Dr. Sorby earned her BS in Civil Engineering, MS in Mechanical Engineering, and PhD in Engineering Mechanics, all at Michigan Tech.

The Academy for Engineering Education Leadership was established in 2018 by the College of Engineering. Two alumni, Sarah Rajala and Karl Smith, were inaugural inductees.

Excellence in Student Publishing

Global map with readership numbers marked at various locations.

This week, October 17–21, 2022, the Graduate School and the Van Pelt and Opie Library celebrate International Open Access Week. The event is organized by the Scholarly Publishing and Academic Resources Coalition (SPARC).

This year, we’re marking Open Access Week by recognizing the 10 years of master’s theses, doctoral dissertations and master’s reports (ETDRs) that are freely available to the world through Digital Commons @ Michigan Tech, the University’s institutional repository. This collection of works is comprehensive back to 2012, and some are nearly a decade older. With Digital Commons, we’re provided with usage statistics that show activity on the platform and across the web. Throughout the week, we’ll share stories and insights informed by these statistics that speak to how publishing Open Access has benefitted Michigan Tech students. In the meantime, take a moment to check out the collection of ETDRs on Digital Commons @ Michigan Tech.

One great feature of Digital Commons @ Michigan Tech is its shareable readership dashboard. This dashboard displays statistics related to how users are interacting with content on the repository. For example, users have downloaded Michigan Tech master’s theses, master’s reports and dissertations over 1.5 million times from 227 different countries.

Top Ten Visited Submissions

  1. 33,471 hits — “Determination of Bulk Density of Rock Core Using Standard Industry Methods
    Author: Kacy Mackenzey Crawford, Master of Science in Civil Engineering
  2. 18,930 hits — “Modeling, Simulation and Control of Hybrid Electric Vehicle Drive While Minimizing Energy Input Requirements Using Optimized Gear Ratios
    Author: Sanjai Massey, Master of Science in Electrical Engineering
  3. 18,484 hits — “Teaching the Gas Properties and Gas Laws: An Inquiry Unit with Alternative Assessment
    Author: Michael Hammar, Master of Science in Applied Science Education
  4. 17,781 hits — “Twelve Factors Influencing Sustainable Recycling of Municipal Solid Waste in Developing Countries
    Author: Alexis Manda Troschinetz, Master of Science in Environmental Engineering
  5. 14,281 hits — “Parameter Estimation for Transformer Modeling
    Author: Sung Don Cho, Doctor of Philosophy in Electrical Engineering
  6. 12,895 hits — “Aerothermodynamic Cycle Analysis of a Dual-Spool, Separate-Exhaust Turbofan Engine with an Interstage Turbine Burner
    Author: Ka Heng Liew, Doctor of Philosophy in Mechanical Engineering-Engineering Mechanics
  7. 12,597 hits — “Virus Purification, Detection and Removal
    Author: Khrupa Saagar Vijayaragavan, Doctor of Philosophy in Chemical Engineering
  8. 11,089 hits — “Measuring the Elastic Modulus of Polymers Using the Atomic Force Microscope
    Author: Daniel Hoffman, Master of Science in Materials Science and Engineering
  9. 11,050 hits — “Identity and Ritual: The American Consumption of True Crime
    Author: Rebecca Frost, Doctor of Philosophy in Rhetoric, Theory and Culture
  10. 10,561 hits — “Energy Harvesting from Body Motion Using Rotational Micro-Generation
    Author: Edwar. Romero-Ramirez, Doctor of Philosophy in Mechanical Engineering-Engineering Mechanics

To dig deeper into the collection, it consists of 2,611 dissertations, theses and reports with 76% of them available Open Access. The Open Access collection represents each college on campus:

  • College of Engineering: 58%
  • College of Sciences and Arts: 28%
  • College of Forest Resources and Environmental Science: 8%
  • College of Computing: 3%
  • College of Business: 1%
  • School of Technology: 1%

Citations for Student Engineering Works

Matthew Howard’s master’s thesis, “Multi-software modeling technique for field distribution propagation through an optical vertical interconnect assembly,” has been mentioned on Facebook 527 times. “Impact of E20 Fuel on High-Performance, Two-Stroke Engine,” a master’s report by Jon Gregory Loesche, was cited in a 2021 technical report by the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.

By the Graduate School and the Van Pelt and Opie Library.