Tag: MEEM

Stories about Mechanical Engineering-Engineering Mechanics.

SWE Students Travel to WE Local, Milwaukee

WE LocalMichigan Tech students Katie Buchalski (Environmental Engineering), Emily Crombez (Computer Science Graduate Student), Hannah Daavettila (Mechanical Engineering), Veronica Lynch (Civil Engineering), Jocelyne Denhof (Mechanical Engineering), and Erin Murdoch (Mechanical Engineering Technology), and faculty adviser, Gretchen Hein (Engineering Fundamentals) attended the Society of Women Engineers WE Local Conference in Milwaukee from Friday through Sunday, March 9 through 11, 2018.

They participated in the conference career fair, and attended professional development sessions and networking activities. Gretchen Hein and Rebecca Reck, Kettering University, as part of the SWE Women in Academia Committee, presented on the various career paths available in academia. The students and adviser were especially moved to hear about the challenges and accomplishments of Sonia Sanchez, professor of Physiology and Biomedical Sciences and assistant dean of Research at the Creighton University School of Dentistry. She spoke about her life journey from a small town in Brazil to her career in Nebraska. The group left her talk inspired and ready to work towards their goals regardless of obstacles.

The group thanks the College of Engineering for their support, and their departments for allowing them to leave early for Spring Break to participate in the SWE WE Local Conference.

Michigan Tech Students at Road America

Autonomous Group by the VehiclELKHART LAKE, Wis. (WLUK) — Students at Michigan Technological University took to the grounds of Road America near Elkhart Lake Thursday to put the finishing touches on a car that literally drives itself.

The autonomous vehicle is part of a contest designed to move the technology forward.

“Well, I’m not driving. It’s an interesting feeling. I’ve been driving for 15 years. Now I get behind the wheel, and the wheel turns, and pedals move, and I don’t have to do anything,” said Spike, a graduate student at Michigan Tech.

Read more at FOX 11 News, by Eric Peterson

Related:

Huskies Hit The Road

Free Webinar for Engineering Department Chairs, Faculty, and Change Leaders

Diverse group of people

The Women in Engineering ProActive Network (WEPAN), American Society of Mechanical Engineers (ASME), and Purdue University College of Engineering are offering an evidence-based approach for fostering a more diverse, equitable, and inclusive (DEI) engineering culture via a series of webinars. The first webinar is 12:30 to 1:30 p.m. Thursday, Feb. 22.

In this interactive webinar you will learn:

  • Why to engage in DEI-focused change
  • How to lead DEI-focused culture change using the new, evidenced-based TECAID (Transforming Engineering Culture to Advance Inclusion & Diversity) Model
  • Who are other engineering department teams that have applied the TECAID Model
  • What additional resources are available to help engineers lead department culture change

Want to get MORE out of this webinar? Invite colleagues to participate with you by setting up a conference room and setting aside time after the webinar to continue the conversation about ways you can adapt the ideas presented in your own department. Watch this 3-minute 2017 NSF Showcase award winning TECAID Project Overview video.

The Department of Mechanical Engineering-Engineering Mechanics was one of five universities that participated in developing the TECAID model. (See this Tech Today article for more details.)

Department Chair William Predebon is one of the presenters in this webinar. Register at this link.

TECAID Transforming Engineering Culture To Advance Inclusion And Diversity

ME Department Teams are OSU, Purdue University, Texas Tech, Michigan Tech, and the University of Oklahoma

Michigan Tech Researchers Honored for their Contributions in 2017

Researchers in the lab

At the Research Development Day held Jan. 11, 2018, the following individuals were recognized for their research contributions in calendar year 2017.

College of Engineering

Top research expenditures: Jeff Naber (ME-EM), Greg Odegard (ME-EM), Paul Sanders (MSE)

Related:

Michigan Tech Automotive Energy Efficiency Research Receives Federal Award of $2.8 Million from US Department of Energy

NASA Taps Tech Professor to Lead $15 Million Space Technology Research Institute

Chemical Engineering

Lei Pan received his first external funding as a principal investigator at Michigan Tech.

Civil and Environmental Engineering

Hui Yao (formerly CEE) received his first external funding as a principal investigator at Michigan Tech.

David Watkins received an award of more than $1 million.

Related:

Household Sustainability: Consuming Food, Energy, Water

Electrical and Computer Engineering

Jeremy Bos, Lucia Gauchia, and Tony Pinar each received their first external funding as a principal investigator at Michigan Tech.

Geological and Mining Engineering and Sciences

Snehamoy Chatterjee, James DeGraff, Mark Kulie, and Matthew Portfleet each received their first external funding as a principal investigator at Michigan Tech.

Materials Science and Engineering

2017 Michigan Tech Research Award: Yun Hang Hu

Bhakta Rath Research Award: Yun Hang Hu and Wei Wei

Joe Licavoli received his first external funding as a principal investigator at Michigan Tech.

Related:

Yun Hang Hu Wins Both Research Award and Bhakta Rath Award

Mechanical Engineering-Engineering Mechanics

Parisa Abadi, Chunpei Cai, Hassan Masoud, and Ye Sun each received their first external funding as a principal investigator at Michigan Tech.

Jeff Naber and Greg Odegard each received awards of more than $1 million.

Tech Students Learn Home Sustainability

From left, Cooper Mineheart, Hannah McKinnon, Mina Kukuk, Rose Turner and Thomas Richter.
From left, Cooper Mineheart, Hannah McKinnon, Mina Kukuk, Rose Turner and Thomas Richter.

HOUGHTON — For five Michigan Technological University students this year, their homework includes their actual home.

This is the first year for Tech’s Sustainability Demonstration Home, where the students are tracking their energy and waste, as well as carrying out projects on how to reduce energy use.

“This semester, we’re kind of working side by side,” said Rose Turner, a fourth-year environmental engineering student and the only of the house’s residents on the Enterprise team.

Cooper Mineheart, a second-year mechanical engineering student, has learned what he can and can’t recycle.

Thomas Richter, a fourth-year mechanical engineering student, said his consciousness of how small changes add up will stick with him after he leaves the house.

Read more at the Mining Gazette, by Garrett Neese.

Related:

Ho Ho Home (Sustainably) for the Holidays

Michigan Tech Exhibits in 2018 AutoMobili-D

AutoMobili-D with cars and people

Michigan Tech will participate in the 2018 AutoMobili-D exposition in Detroit. The event will run from Jan. 12-21. A portion of this program overlaps with the North American International Auto Show.

AutoMobili-D features 150,000 sq. ft. of dynamic display communities in the Cobo Center Atrium overlooking the international waterway and the adjoining Planet M hall.

Michigan Tech will be located in the “Universities” section of AutoMobili-D which will have about 30 universities including MIT, U-M and Carnegie Mellon. Michigan Tech’s booth will feature our unique research capabilities related to automotive research and unstructured environments.

Predebon represents Michigan Tech at Michigan auto show funding new autonomous test track

Bill Predebon (ME-EM) represented Michigan Tech at the Governor’s press conference on the American Center for Mobility (ACM) at the International Auto Show in the Cobo Center for Detroit on Jan. 16. Subaru of America gave a two million dollar sponsorship to the ACM with state, business and education officials on the stage. All of the representatives from the ACM University Consortium were present on stage.

$2M launches new wave of funding for Michigan’s autonomous test track

The announcement at Detroit’s auto show about Subaru’s new connection to the ACM is only the first significant development projected for the site in 2018. ACM officials promise more to come as the site gains traction.

Read more at Mlive, by Paula Gardner.

Three Enterprise Teams Compete in Fifth Annual Rekhi Innovation Challenge

BoardSport Color Gradient GraphicThe Fifth Annual Rekhi Innovation Challenge kicked off on Friday Nov. 10, 2017. Three Enterprise teams are competing for funding this year: Blue Marble Security, BoardSport Technologies and Velovations. The Rekhi Challenge is a crowdfunding competition to help promote and support student innovation and entrepreneurship through Michigan Tech’s crowdfunding site, Superior Ideas. The team that raises the most money will receive a monetary match of up to $5,000.

Monetary awards for total number of unique visitors, total number of unique funders, most social media engagement, most creative marketing plan and the first team to raise $1,000 will also be presented to teams at the conclusion of the competition.

Superior Ideas was established in 2012 to help bring university research and public service projects to life. The site uses crowdfunding to raise money and awareness for university research and public service projects that may not qualify for grant funding.

The Rekhi Innovation Challenge was developed in collaboration with the Enterprise Program Office and the Vice President for Research Office with support from Michigan Tech alumnus and longtime donor Kanwal Rekhi. The Silicon Valley-based entrepreneur, earned his master’s degree in electrical engineering from Michigan Tech in 1969.

Enterprise teams that have participated in past challenges include Innovative Global Solutions, Robotics Systems, Supermileage Systems, Aerospace, Blizzard Baja, GEAR and Open Source Hardware. Velovations took first place in the last competition with $2,550 in donations and a match of $2,550 from Rekhi, bringing the grand total to $5,100 in funding for their RENEW-U project.

RENEW-U is an ergometer for wheelchair users to exercise upper-extremity muscles in order to improve strength and mobility. Over the last four years, the Rekhi Innovation Challenge has provided more than $58,000 in support for 23 different student projects, attracting 267 unique donors.

For this year’s Rekhi Innovation Challenge, Blue Marble Security Enterprise is raising money to reach out to various community members and groups to increase interest in STEM fields among middle and high school students, particularly women.

BoardSport Technologies wants to develop a SmartBoard that will track snowboarders via GPS and REECO location to ensure a speedy rescue if caught in an avalanche or lost.

Velovations Enterprise is working with a local trails club to design and build a multi-purpose trail groomer with modular parts that can be swapped in the field to accommodate varying conditions.

If you’d like to learn more about any of these projects or donate, visit Superior Ideas. The Rekhi Innovation Challenge will run through March 31, 2018. Help support student innovation and entrepreneurship at Michigan Tech by making a donation today.

Inspired by nature—Getting underwater robots to work together, continuously

Nina Mahmoudian, Mechanical Engineering-Engineering Mechanics
Nina Mahmoudian, Mechanical Engineering-Engineering Mechanics

Imagine deploying multiple undersea robots, all in touch and working together for months, even years, no matter how rigorous the mission, brutal the environment, or extreme the conditions.

It is possible, though not quite yet. “Limited energy resources and underwater communication are the biggest issues,” says Michigan Tech Researcher Nina Mahmoudian. Grants from a National Science Foundation CAREER Award and the Young Investigator Program from the Office of Naval Research are helping Mahmoudian solve those issues and pursue her ultimate goal: the persistent operation of undersea robots.

“Autonomous underwater vehicles (AUVs) are becoming more affordable and accessible to the research community,” she says. “But we still need multipurpose long-lasting AUVs that can adapt to new missions quickly and easily.”

Mahmoudian has already developed a fleet of low-cost, underwater gliders, ROUGHIEs, to do just that. Powered by batteries, they move together through the water simply by adjusting their buoyancy and weight. Each one weighs about 25 pounds. “ROUGHIE, by the way, stands for Research-Oriented Underwater Glider for Hands-on Investigative Engineering,” adds Mahmoudian.

“My most exciting observation was a Beluga mother and calf swimming together. It’s very similar to our recharge on-the-fly concept.”

Nina Mahmoudian

“The ROUGHIE’s open control architecture can be rapidly modified to incorporate new control algorithms and integrate novel sensors,” she explains. “Components can be serviced, replaced, or rearranged in the field, so scientists can validate their research in situ.” Research in underwater control systems, communication and networking, and cooperative planning and navigation all stand to gain.

Mahmoudian observes Mother Nature to design robotic systems. “There is so much to learn,” she says. “My most exciting observation was a Beluga mother and calf swimming together. It’s very similar to our recharge on-the-fly concept. The technology is an early stage of development.”

Mahmoudian’s students apply and implement their algorithms on real robots and test them in real environments. They also give back to the community, by teaching middle school students how to design, build, and program their own low-cost underwater robots using a simple water bottle, called a GUPPIE.

“As a girl growing up, I first thought of becoming an architect,” says Mahmoudian. “Then, one day I visited an exhibition celebrating the 30th anniversary of space flight. That’s when I found my passion.” Mahmoudian went on to pursue aerospace engineering in Iran, and then graduate studies at Virginia Tech in the Department of Aerospace and Ocean Engineering. “Underwater gliders share the same physical concepts as airplanes and gliders, but deal with different fluid density and interactions,” she says.

Now at Michigan Tech, Mahmoudian’s work advances the abilities of unmanned robotic systems in the air, on land, and under sea. “Michigan Tech has easy access to the North Woods and Lake Superior—an ideal surrogate environment for testing the kind of autonomous systems needed for long term, challenging expeditions, like Arctic system exploration, or searching for signs of life on Europa, Jupiter’s moon.” She developed the Nonlinear and Autonomous Systems Laboratory (NAS Lab) in 2011 to address challenges that currently limit the use of autonomous vehicles in unknown, complex situations.

More than scientists and engineers, Mahmoudian wants simple, low-cost AUV’s to be available to anyone who may need one. “I envision communities in the Third World deploying low-cost AUVs to test and monitor the safety and quality of the water they use.”

Vital signs—Powering heart monitors with motion artifacts

Electrocardiogram research Ye Sarah Sun

More than 90 percent of US medical expenditures are spent on caring for patients who cope with chronic diseases. Some patients with congestive heart failure, for example, wear heart monitors 24/7 amid their daily activities.

Ye Sarah Sun
Ye Sarah Sun, Mechanical Engineering-Engineering Mechanics

Michigan Tech researcher Ye Sarah Sun develops new human interfaces for heart monitoring. “There’s been a real trade-off between comfort and signal accuracy, which can interfere with patient care and outcomes,” she says. Sun’s goal is to provide a reliable, personalized heart monitoring system that won’t disturb a patient’s life. “Patients need seamless monitoring while at home, and also while driving or at work,” she says.

Sun has designed a wearable, self-powered electrocardiogram (ECG) heart monitor. “ECG, a physiological signal, is the gold standard for diagnosis and treatment of heart disease, but it is a weak signal,” Sun explains. “When monitoring a weak signal, motion artifacts arise. Mitigating those artifacts is the greatest challenge.”

Sun and her research team have discovered and tapped into the mechanism underlying the phenomenon of motion artifacts. “We not only reduce the in uence of motion artifacts but also use it as a power resource,” she says.

Their new energy harvesting mechanism provides relatively high power density compared with traditional thermal and piezoelectric mechanisms. Sun and her team have greatly reduced the size and weight of an ECG monitoring device compared to a traditional battery-based solution. “The entire system is very small,” she says, about the size of a pack of gum.

“We not only reduce the influence of motion artifacts but also use it as a power resource.”

Ye Sarah Sun

Unlike conventional clinical heart monitoring systems, Sun’s monitoring platform is able to acquire electrophysiological signals despite a gap of hair, cloth, or air between the skin and the electrodes. With no direct contact to the skin, users can avoid potential skin irritation and allergic contact dermatitis, too—something that could make long-term monitoring a lot more comfortable.

Ye Sarah Sun self-powered ECG heart monitor
Sun’s self-powered ECG heart monitor works despite a gap of hair, cloth or air between the user’s skin and the electrodes.

AV START Act May Boost Autonomous Vehicle Testing

Gary Peters and Jeff Naber
U.S. Sen. Gary Peters and Jeff Naber

HOUGHTON — Testing of autonomous vehicles, such as that being done at Michigan Technological University, could get a boost with legislation working its way through Congress.

The American Vision for Safer Transportation through Advancement of Revolutionary Technologies (AV START) Act was approved by the Senate Commerce, Science and Transportation Committee in October. U.S. Sen.

Gary Peters, D-Mich., sponsored the bill along with Sen. John Thune, R-S.D. U.S. Sen. Debbie Stabenow, D-Mich., is a co-sponsor of the legislation.

In March, Peters visited Tech’s Advanced Power System Research Center to get informed of Tech’s research and development efforts into autonomous vehicles.

Jeff Naber, director of the center, said the bill will enable the advancement of autonomous vehicle functions.

Read more at the Mining Gazette, by Garrett Neese.