Tag: MEEM

Stories about Mechanical Engineering-Engineering Mechanics.

Fall 2021 Research Seed Grants for Engineering PIs

Michigan Tech campus and Portage waterway in the autumn.

The Vice President for Research Office announces the Fall 2021 Research Excellence Funds (REF) awards. Congratulations to all the principal investigators!

Thanks to the individual REF reviewers and the REF review panelists, as well as the deans and department chairs, for their time spent on this important internal research award process. Awardees in the College of Engineering include:

Research Seed Grants

By Kathy Halvorsen, Associate Vice President for Research Development.

Engineering Graduate Students Place in 2021 3MT

This year’s Three Minute Thesis competition organized by the Graduate Student Government (GSG) of Michigan Tech had great participation both in person at The Orpheum Theater and virtually over Facebook Live. Twenty-eight participants competed at the MUB Ballroom for a place in the finals, held at The Orpheum Theater on Nov. 4.

After a very close competition, Priyanka Kadav, a PhD student from the Department of Chemistry, won first place.

Kadav’s presentation was titled “Capture and Release (CaRe): A novel protein purification technique.” She will go on to represent Michigan Tech at the regional levels of the competition.

The runner-up was Emily Shaw, a PhD student from the Department of Civil, Environmental, and Geospatial Engineering, with a presentation titled “Toxicity in Fish Tissue: Redefining our Understandings by Quantifying Mixture Toxicity.”

Yue (Emily) Kang from the Department of Mathematical Sciences department won the People’s Choice award with her presentation, titled “Robust numerical solvers for flows in fractured porous media.”

Other finalists were:

Each presentation was scored by a panel of judges from diverse academic backgrounds. The judges for the finals were:

  • Wallace Southerland III, Vice President for Student Affairs and Dean of Students
  • Jim Baker, associate vice president for research administration
  • Marie Cleveland, a Michigan Tech alumna who was awarded the Alumni Association Outstanding Service Award in 2014

This year’s finals were also streamed live on GSG’s Facebook page and can be watched online.

GSG would also like to thank all the volunteers and The Orpheum Theater for making this event possible.

By Graduate Student Government.

Emily Shaw presenting at 3MT.
Emily Shaw presenting at 3MT.
Sunit Girdhar presenting at 3MT.
Sunit Girdhar presenting at 3MT.
Arman Tatar presenting at 3MT.
Arman Tatar presenting at 3MT.
Michael Maurer presenting at 3MT.
Michael Maurer presenting at 3MT.

Bo Chen: What’s next, NEXTCAR?

Bo Chen shares her knowledge on Husky Bites, a free, interactive webinar this Monday, November 15 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Bo Chen is a Professor of Mechanical Engineering and Electrical Engineering at Michigan Tech. She’s been a visiting Professor at Argonne National Laboratory, and was named ASME Fellow in 2020.

What’s next, NEXTCAR? What are you doing for supper this Monday night 11/15 at 6 pm ET? Grab a bite with Dean Janet Callahan and Bo Chen, Professor of Mechanical Engineering and Electrical Engineering at Michigan Tech.

During Husky Bites, Prof. Chen and one of her former students, alum Dr. Joe Oncken, will share how engineers go about designing and creating the crucial elements of an all-electric vehicle ecosystem. Oncken earned his PhD at Michigan Tech—he’s now a postdoctoral researcher at Idaho National Lab.

Chen and her research team at Michigan Tech envision an all-electric future. They develop advanced control algorithms to build the nation’s electric vehicle charging infrastructure and highly efficient hybrid electric vehicles, integrating with advanced sensing technologies that allow for predictive control in real time. These technologies enable the kind of vehicle-to-vehicle and vehicle-to-infrastructure communication that will reduce our nation’s energy consumption. 

Drs. Chen and Oncken among the fleet, outside at the APSRC.

Throughout her career Chen has made major contributions in the field of embedded systems, developing cutting-edge applications for hybrid-electric and electric autonomous systems. 

One of Chen’s courses at Michigan Tech, Model-based Embedded Control System Design, is regularly in high demand, not only by ME students but also EE students. “This is a testament to her teaching ability and the importance of the topic,” says ME-EM department chair Bill Predebon.

Chen’s Intelligent Mechatronics and Embedded Systems Lab is located on the 5th floor of the ME-EM building. But she spends a good deal of time working on NEXTCAR research at the Advanced Power Systems Research Center (APSRC), located a few miles from campus near the Houghton Memorial Airport.

“Vehicles that are both connected and automated—two paradigm-shifting technologies—will soon become vital for the improvement of safety, mobility, and efficiency of our transportation systems.”

Bo Chen

In 2016 the Department of Energy’s Advanced Research Projects-Energy (ARPA-E) awarded $2.5M to Michigan Tech for NEXTCAR research. The project—led by ME-EM Professor Jeff Naber as PI and Co-PIs Chen, Darrell Robinette, Mahdi Shahbakhti, and Kuilin Zhang—developed and demonstrated their energy reduction technologies using a fleet of eight Gen II Chevy Volt plug-in-hybrid vehicles (aka PHEVs).

The team tested the fleet on a 24-mile test loop to showcase energy optimization, forecasting, and controls—including vehicle-to-vehicle communications.

“The rich information provided by connectivity—and the capability of on-board intelligent controls—are shifting the old way (reactive and isolated vehicle/powertrain control) to the new way (predictive, cooperative, and integrated vehicle dynamics and powertrain control),” Chen explains.

Michigan Tech’s NEXTCAR research delivers direct implementation of engineering solutions, tested within the realities of on-road conditions.

Oncken is a hands-on engineer, but not all of his graduate research at Michigan Tech was done under the hood of a hybrid-electric vehicle. In an effort to maximize fuel efficiency in the fleet’s Chevy Volts, he worked with Chen where the car’s digital and mechanical parts meet—powertrain control. He looked at future driving conditions, such as changing traffic lights, and modified the vehicle’s powertrain operation to use the minimum amount of fuel.

Working in Chen’s lab, Oncken used Simulink software to develop a model, specifically looking at predictive controller design. That means when a traffic signal turns red, a self-driving vehicle not only knows to stop, but also gets directions on the best way to slow down and minimize fuel use. 

Oncken would simulate this in the Simulink model, embed the program into the Chevy Volt, then test it using five upgraded traffic signals in Houghton that rely on dedicated short-range communication (DSRC) to talk directly to the car’s programming.

By the end of the NEXTCAR project, the Michigan Tech team had achieved a 21 percent reduction in energy consumption.

All in a day’s work for Dr. Joe Oncken
Dr. Chen with her graduate students at Pictured Rocks National Lakeshore

Now, with new funding from ARPA-E for NEXTCAR II, the team shifts to a broader application of vehicles with level 4 and 5 of autonomy. They will seek to reduce energy consumption by 30 percent this time in the hybrid Chrysler Pacifica and further apply the savings to the RAM 1500 and the Chevy Bolt—while also considering level 4 and 5 automation to gain efficiencies. 

Naber and Chen, along with Grant Ovist, Jeremy Bos, Darrell Robinette, Basha Dudekula and several more graduate students now work together on NEXTCAR II with another round of funding worth $4.5M. They’ll maintain vehicles in multiple locations, both on the Michigan Tech campus and at American Center for Mobility (ACM) for road testing. ACM is a partner in the project, along with Stellantis and GM.

Prof. Chen, how did you first get into engineering? What sparked your interest?

I was attracted by the power of automation and controls. It is currently affecting every aspect of our lives. I want to make contributions specifically to advance the automation technologies.

In her spare time, Dr. Chen likes to work out and travel. Here she’s in Horseshoe Bend, Arizona

Hometown, family?

I was raised in Shaoxing, Zhejiang province in China. I lived in Davis, California for 8 years while earning my PhD at the University of California-Davis. My daughter loves snowboarding and lives in New Jersey.

Dr. Oncken, where did you grow up?

I grew up with my parents and two sisters in Grand Forks, North Dakota. I earned my BS in Mechanical Engineering at the University of North Dakota in 2016. I came to Michigan Tech to earn my PhD soon after, and graduated in 2020.

How did you first get into engineering? What sparked your interest?

There wasn’t any one moment that made me decide to get into engineering. It was more of a process throughout my childhood. Growing up, I was always interested in how things work. My dad is very mechanically inclined so he was alway fixing things around the house and woodworking, so that launched my interest as a young kid. At that time he worked for John Deere, so I got to spend time sitting in tractors and combines, something that will spark any 5 year old’s interest in mechanical things. 

In high school, I also worked for a John Deere dealer. Another job I had involved the technical side (lighting, sound, and set building) of theater and concert productions. While these may seem like two different worlds, they both gave me a behind-the-scenes look at how machinery and large technical systems operate. Together they made me want to pursue a career where I’d be the one designing how things work. 

Finally, living in a university town, there were lots of opportunities to tour the University of North Dakota’s engineering school and see what students got to work on, opportunities that cemented my desire to go into engineering myself.

Joe, out on the Tech Trails.

Any hobbies? Pets?

My main hobby is anything outdoors. I spend my free time mountain biking in the summer, skiing in the winter—and hiking when I’m not doing one of the previous two things.

I also really enjoy cooking and wood working. I don’t currently have any pets, but I did grow up with dogs. I will have a dog of my own sooner rather than later!

Read More

Power Grid, Powertrain and the Models that Connect ThemMichigan Tech Automotive Energy Efficiency Research Receives Federal Award of $2.8 Million from US Department of Energy

Sunit Girdhar, Steven Whitaker Receive 2021 INCE Awards

Two Michigan Tech graduate students were honored by The Institute of Noise Control Engineering (INCE) at their annual honors and awards ceremony recognizing outstanding service, research and activity in noise control.

Sunit Girdhar,
Sunit Girdhar

Sunit Girdhar, doctoral student in mechanical engineering-engineering mechanics, won both the inaugural INCE Student Scholarship and the Martin Hirschorn IAC Prize – Student Project.

Steven Whitaker, an electrical and computer engineering graduate student, received the 2021 Leo Beranek Student Medal for Excellence in Noise Control for Deep recurrent network for tracking an anthropogenic acoustics source in shallow water using a single sensor.

Dana Lodico, INCE-USA vice president, Honors and Awards Committee, applauded the winners. “This year’s winners should be incredibly proud of their achievements in noise control,” said Lodico. “Entries for INCE-USA Honors and Awards were very competitive, and we look forward to seeing how each winner continues to advance the noise control industry in their careers.” 

Read more about the awards on the INCE website.

Greg Odegard: Manned Mars Missions—New Materials

As NASA shifts its focus from low-earth orbit to deep space exploration, the agency is going to need building materials for vehicles, habitats, power systems and other equipment that are lighter and stronger than those available today. Pictured: NASA’s Curiosity Mars image at Mont Mercou, a rock outcrop that stands 20 feet tall. Credit: NASA/JPL-Caltech/MSSS

Greg Odegard shares his knowledge on Husky Bites, a free, interactive webinar this Monday, November 8 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 11/8 at 6 pm ET? Grab a bite with Dean Janet Callahan and Greg Odegard, Professor of Mechanical Engineering-Engineering Mechanics at Michigan Tech. 

Dr. Greg Odegard is the John O. Hallquist Endowed Chair in Computational Mechanics at Michigan Tech.

It’s a bit of a conundrum. When sending humans into space for long periods of time, a significant amount of mass (food, water, supplies) needs to be put on the rockets that leave Earth. More mass in the rocket requires more fuel, which adds more mass and requires more fuel. Current state-of-the-art structural aerospace materials only add more mass, which requires—you guessed it—more fuel. 

During Husky Bites, Professor Greg Odegard will share how his team of researchers at Michigan Tech go about developing new ultra-light weight structural materials to significantly cut fuel costs for sending humans to Mars—and beyond.

Dr. Bill Predebon is the J.S. Endowed Department Chair in Mechanical Engineering–Engineering Mechanics at Michigan Tech

Joining in will be ME-EM department chair Bill Predebon. Dr. Predebon has been at Michigan Tech since 1975. That’s 46 years, and 24 years as department chair. He plans to retire this summer.

“Bill Predebon has been my mentor since I came to Michigan Tech in 2004. I have enjoyed working for him, and I am not ready for him to retire,” says Odegard. “I was extremely impressed with him during my job interview in 2003, which is one of the biggest reasons I came to Michigan Tech.”

In addition to teaching classes and mentoring students at Michigan Tech, Odegard leads the charge in developing a new lighter, stronger, tougher polymer composite for human deep space exploration, through the Ultra-Strong Composites by Computational Design (US-COMP) Institute.

The NASA-funded research project brings together 13 academia and industry partners with a range of expertise in molecular modeling,manufacturing, material synthesis, and testing, now in the final year of the five-year project. 

Pictured: Pre-machined fragments of a polybenzoxazine high-performance polymer in Dr. Odegard’s lab at Michigan Tech. This polymer can be used with carbon-nanotubes to form ultra-strong composites for deep-space applications.

US-COMP’s goal is to develop and deploy a carbon nanotube-based, ultra-high strength lightweight aerospace structural material within five years. And US-COMP research promises to have societal impacts on Earth as well as in space, notes Odegard. Advanced materials created by the institute could support an array of applications and benefit the nation’s manufacturing sector.

The material of choice, says Odegard: carbon. He specifically studies ultrastrong carbon-nanotube-based composites. But not all carbon is equal, notes Odegard. Soft sheets of graphite differ from the rigid strength of diamond, and the flexibility and electrical properties of graphene.

“In its many forms, carbon can perform in many ways. The tricky part with composites is figuring out how different materials interact,” he explains. 

Odegard and his research team use computational simulation—modeling—to predict what materials to combine, how much and whether they’ll stand up to the depths of space. “When we began developing these ultra-strong composites, we weren’t sure of the best starting fibers and polymers, but over time we started to realize certain nanotubes and resins consistently outperformed others,” says Odegard. “Through this period of development, we realized what our critical path to maximize performance would be, and decided to focus only on that, rather than explore the full range of possibilities.”

“I have the most fun working with my students and the broader US-COMP team. Our whole team is excited about the research and our progress, and this makes for some of the best research meetings I have experienced in my career.”

Dr. Greg Odegard

The challenge when working with carbon nanotubes is their structure, says Odegard. “Under the most powerful optical microscope you see a certain structure, but when you look under an SEM microscope you see a completely different structure,” he explains. “In order to understand how to build the best composite panel, we have to understand everything at each length scale.” 

The US COMP Institute has created dedicated experiments and computational models for the chosen carbon nanotube structure, something that must be done for each length scale, from the macro to the atomic.

As their project comes to a close, they’ve zeroed in how just how polymer can be used with carbon-nanotubes to form ultra-strong composites.


NASA’s Mars Curiosity rover took this mosaic image, looking uphill at Mount Sharp.

US-COMP PARTNERS

  • Florida A&M University
  • Florida State University
  • Georgia Institute of Technology
  • Massachusetts Institute of Technology
  • Pennsylvania State University
  • University of Colorado
  • University of Minnesota
  • University of Utah
  • Virginia Commonwealth University
  • Nanocomp Technologies
  • Solvay
  • US Air Force Research Lab
Professor Odegard up on Mt. Meeker, in Colorado where he grew up and earned his degrees.

“As a group we have been able to push the envelope way beyond where we started in 2017—expanding the performance in a very short time period,” says Odegard. “This was made possible through remarkable collaboration across the institute.”

Before Predebon convinced him to join the faculty at Michigan Tech, Odegard worked as a researcher at NASA Langley Research Center in Hampton, Virginia. Odegard’s research has been funded by NASA, the Air Force Office of Scientific Research, the National Science Foundation, the National Institutes of Health, Mayo Clinic, Southwestern Energy, General Motors, REL, and Titan Tires. As a PI and co-PI, he has been involved in externally funded research projects totaling over $21 million. Odegard was a Fulbright Research Scholar at the Norwegian University of Science and Technology. In 2019 he was elected a Fellow of ASME, in recognition of his significant impact and outstanding contributions in the field of composite materials research.

The Odegard family enjoying their time together

Prof. Odegard, how did you first get into engineering? What sparked your interest?

Growing up, I always knew that I would be an engineer. I was always interested in airplanes and spacecraft. 

Hometown, family?

I grew up and went to college in the Denver area. I was already accustomed to snow when I moved to Michigan. 

Any hobbies? What do you do in your spare time?

In the summer, I enjoy running, mountain biking, hiking, basketball, and soccer. In the winter, I like cross-country skiing and downhill skiing. I also enjoy cooking, traveling, and anything fun with my family.

Dr. Predebon, how did you first get into engineering? What sparked your interest?

During my childhood my dad introduced me to model trains. We had a large 8ft x 4ft board with Lionel trains. I learned how they work and how to set it up. That sparked my interest in engineering.

Bill and Peter at Winter Carnival

Hometown, family?

I was born in Trenton, New Jersey. I had one brother, Peter, who is deceased now.  

What do you like to do in your spare time?

For most of my career at Michigan Tech my hobby has been my work. My work has absorbed my life, by choice. I have a real passion for our program. However, I do enjoy exercising, repairing things, and organic gardening. My wife, Maryanne, is very good; I just help. We have a peach tree, we have grown watermelon, we’ve grown cantaloupes, we’ve grown potatoes, her passion is pumpkins so we grow these large pumpkins—150 pounds.

“The way I look at my role is to nurture the growth of my faculty and staff, right along with our students. I want to help them all reach their potential.”

Dr. Bill Predebon

Read More:

Q&A with MTU Research Award Winner Gregory Odegard
NASA Taps Tech Professor to Lead $15 Million Space Technology Research Institute

Michigan Tech Engineering Students at COP26

UN Climate Change Conference UK 2021 in Partnership with Italy

Six Michigan Tech students and three alumni will help lead events and a press conference at the 26th United Nations Climate Change Conference of the Parties (COP26) in Glasgow, Scotland.

As part of the Youth Environmental Alliance in Higher Education (YEAH), a multidisciplinary research and education network of students and faculty from 10 universities across four continents, MTU representatives will help showcase the “Voices of Optimism, Agents of Change” event and exhibit. They will also participate in a press conference Nov. 3 at 11:30 a.m. ET.

Participating engineering students are:

Read more about engineering students at COP26 in Michigan Tech Press Releases.

Alumni Gift of Advanced 3D Metal Printer Now Up and Running at Michigan Tech

One of the first test prints on Michigan Tech’s new 3D metal printer: intricate little fish.

A gift from Alumni, Michigan Tech’s highly-advanced 3D metal printer—a 3D Systems ProX350—arrived last March. It’s now up and running, able to process 11 unique metals, including bio-grade titanium (for biomedical applications), cobalt and chromium, several types of stainless steel, and more. With a resolution of 5 microns, this new large printer is state-of-the-art. 

Obtaining the new 3D printer was made possible by the generosity of Michigan Tech alumni. ME-EM Department Chair Bill Predebon received a 20 percent discount on the $875K system from Scarlett Inc. The owner of Scarlett Inc, Jim Scarlett, is a mechanical engineering alumnus. 

In addition to Scarlett, several other alumni donors pitched in. One anonymous donor provided over $600K , and five others have made up the difference to meet the full cost of $673K. Those five are: Ron Starr, John Drake, Frank Agusti, Todd Fernstrum, and Victor Swanson.

ME-EM department chair Bill Predebon and mechanical engineering alum Jim Scarlett

“Very few universities have a 3D metal printer of this quality and versatility,” says Predebon. “It is one of the most accurate metal 3D printers available. With approximately a 1-ft. cube size billet, which is an impressive size billet, you can make a full-size or scaled-down version of just about anything,” says Predebon.

“We can use our own metal powders, as well,” adds Predebon. “That’s a huge plus. Michigan Tech researchers, particularly those focused on materials development, can use the printer to deposit experimental metal compositions to produce unique metal alloys customized specifically for the 3D printing process.”

Faculty and graduate students at Michigan Tech will have access to the 3D metal printer for research projects. Undergraduate students working on senior design projects and student-run Enterprise teams will, too.

The process is direct metal printing, or DMP, and it’s a type of additive manufacturing, Predebon explains. “You start with metal powders, and from those you create the final metal part. You’re adding a material—in this case, metal—bit by bit. Traditional manufacturing is all about subtracting: taking metal away to make a part. This is the inverse, and it’s a game changer. You can do so much more this way.”

“For many industries—including medical, automotive and aerospace—3D metal printing is a game changer. Here on campus it will be a game changer for Michigan Tech faculty and students, too.” 

William Predebon, Chair, Mechanical Engineering-Engineering Mechanics

Very few universities yet have a system with this sophistication and quality, notes Predebon. 

The benefit for Michigan Tech students, Predebon says, is competitive advantage. “When our students interview for a job, they will be able to communicate how they’ve been able to produce parts in a way very similar to what industry is doing. Some companies have metal 3D printers worth millions of dollars. In industry, engineers can use one of those to print out an entire engine block,” he says. “When Michigan Tech graduates see one on out in industry, the 3D metal printer might be larger, but they will already be familiar with the type of system.”

According to Materials Science and Engineering Professor Steve Kampe, development of additive manufacturing of metals represents a huge opportunity that will be prominent in manufacturing for generations to come. “It is a transformative technology in engineering,” says Kampe. “Using 3D printing to create metallic components poses huge challenges; but the potential benefits are enormous.”

“Metal additive manufacturing along with polymer additive processes are industry 4.0 topics included in Michigan Tech’s online graduate certificate in Manufacturing Engineering,” adds Professor John Irwin, chair of the Department of Manufacturing and Mechanical Engineering Technology. “It is very fortunate for us to have this metal 3D printer here on campus. We’ll use it to demonstrate additive manufacturing design principles and view product purpose: form, fit, and function. 

Michigan Tech’s new metal 3D printer is located on campus in the Minerals and Materials Engineering (M&M) Building. The location in Room 117, is near several other 3D polymer printers. For more information on using the new printer, contact MSE Research Engineer Russ Stein.

Take A Virtual Tour of Our 3D Metal Printer

https://www.mtu.edu/unscripted/2021/10/be-brief-metal.html

Innovators in Industry: Future of Autonomous Vehicles and Mobility

Michigan Tech is excited to launch Innovators in Industry: a project connecting students with MTU alumni who are industry experts, leaders, and influencers.

The initial three-part series kicks off on Monday, October 25 at 7 pm with a session titled, “The Future of Autonomous Vehicles and Mobility.”

Featured alumni for the session will be Sean Kelley ‘86 of the Mannik & Smith Group, Inc., an engineering and environmental sciences consulting firm; Mark Rakoski ‘95, of Mitsubishi Electric Automotive America Inc.; and Birgit Sorgenfrei ’91 of Ford Motor Company.

Janet Callahan, Dean of the College of Engineering, will host the first session. Jeremy Bos, assistant professor of Electrical and Computer Engineering (and also an alum) will serve as co-moderator. Bos earned a BS in Electrical Engineering at Michigan Tech in 2000 and a PhD in Electrical Engineering and Optics in 2012. He serves as advisor to Michigan Tech students taking part in the SAE AutoDrive Challenge.

The featured alumni will make short presentations with time for Q&A from the audience. All Michigan Tech students, faculty, and staff are invited to join the Zoom session.

During the session Sorgenfrei, Kelley, and Rakoski will discuss the future of autonomous automobiles and their design, and the design of the infrastructure with which those automobiles will need to communicate.

If the three alums could each go back in time, what would they have strived to learn while at Michigan Tech? They’ll share those insights with us, and provide valuable advice for students—those due to graduate soon, and in the next few years.

“Cars are some of the most complicated things out there, more complicated than jets or commercial aircraft. They’re basically really smart computers that move and let people get inside them.”

Sean Kelley

Sean Kelley is senior vice president and principal with the Mannik & Smith Group, Inc., a 370-person engineering and environmental sciences consulting firm with 15 offices in Michigan, Ohio and West Virginia. He earned a BS in Civil Engineering at Michigan Tech, and an MBA at Eastern Michigan University. He’s a registered Professional Engineer in both Michigan and Ohio.

Sean Kelley (’86 Civil Engineering), Mannik & Smith Group, Inc.

Kelley has led the development of infrastructure for closed-system test facilities to advance smart mobility technology, including three of the most significant facilities in the Midwest: University of Michigan’s Mcity in Ann Arbor; the American Center for Mobility located 30 minutes west of Detroit and the Transportation Research Center located at Honda’s North American test center in Central Ohio.  

He’s a recognized leader in the engineering consulting industry in Michigan. His focus on both the public and private sectors allows him to understand and appreciate the challenges associated with creating and maintaining a well-functioning and sustainable infrastructure to support a high quality of life for everyone. Kelley is often a featured speaker at conferences related to transportation and smart mobility. He has two grown children—Morgan and Aaron—who share his passion for learning and helping to advance humanity and a healthier planet.  

“Today there seems to be a huge disruption in the deeply embedded culture of the automotive industry: in order to get a common platform for smart mobility, there really has to be a lot more sharing and working together.”

Mark Rakoski

Mark Rakoski is VP, Advanced Engineering at Mitsubishi Electric. He joined the company in 1996 as an application engineer, soon after earning his BS in Mechanical Engineering at Michigan Tech. Over the course of his career, he has served the company in various capacities, including as senior account manager for Fiat Chrysler Automobiles (FCA) and director and executive director for both the FCA and Ford accounts. 

Mark Rakoski (Mechanical Engineering ’95), Mitsubishi Electric

In his current position Rakoski is responsible for leading product development engineering teams for vehicle connectivity, autonomous sharing and electric solutions, and Mobility-as-a-Service—with specific focus on infotainment and advanced driver-assistance systems (ADAS). 

In 2020, Rakoski was appointed to the Mitsubishi Electric Mobility Ventures (MEMO Ventures) Board. MEMO Ventures explores and funds ideas to create new business opportunities for the company’s Automotive Equipment Group (AEG) in the rapidly evolving mobility sector.

Rakoski is also responsible for Silicon Valley new ventures team management, contract negotiations, marketing and global strategic accounts management. He resides in South Lyon, Michigan. 

“The auto industry has been assisting our customers while behind the wheel for years, starting with the introduction of cruise control in 1948. Working in Driver Assist Technology is exciting, as the technologies leading to self-driving vehicles are available to customers now to increase safety and convenience.”

Birgit Sorgenfrei (EE ’91) Ford Motor Company
Birgit Sorgenfrei (Electrical Engineering ’91) Ford Motor Company

Birgit Sorgenfrei is currently a Driver Assist Technology Applications Lead at Ford Motor Company. She was previously Electrical Lead for Lincoln & Ford Programs, as well as a systems manager responsible for Autonomous Vehicle integration and advanced features for electrified vehicles. Her more than 20-year career at Ford includes research on sensors for electrical power assist steering systems, component and system radio design, vehicle planning, hybrid battery software delivery, fuel cell technology development, and the introduction of StartStop Technology to North America. Previously, she worked for General Electric, Johnson Controls Inc., IBM, General Motors, and internationally for Schlumberger Industries in France, the University of Hanover in Germany, and Ford Motor Company in England and Germany. Sorgenfrei earned her BS in Electrical Engineering at Michigan Tech in 1991, graduating summa cum laude. She then earned a MSEE degree from MIT, and later an MBA from the University of Michigan.


Other upcoming sessions of Innovators in Industry include:

Monday, November 1 – The Computing Revolution (hosted by the College of Computing)

Monday, November 8 – Entrepreneurship: Startups & Venture Capital (hosted by the College of Business)

All sessions will begin at 7 p.m. on Zoom.

The series is organized by the Office of Advancement and Alumni Engagement, Innovators in Industry aims to give students direct access to industry leaders to help shape their paths. Future plans for the Innovators in Industry series include in-person sessions and on-location visits for students to industry hubs.

Then There Were Three: Stratus Nanosatellite Launch for MTU’s Aerospace Enterprise

Michigan Tech’s students designed Auris. It has been selected for launch by the University Nanosatellite Program, sponsored by AFRL.

The Aerospace Enterprise, under the direction of Dr. Brad King, is launching satellites as well as student careers. At the University Nanosatellite Program, sponsored by the Air Force Research Lab (AFRL) in August, ten students from the Enterprise team presented their latest satellite application, Auris, to judges from several space-related agencies.

The challenge for the competition was to develop a satellite mission that is relevant to both industry and the military. Students conceived of the idea for Auris, a ‘listening satellite,’ through discussions with Enterprise alumni working in industry and their interest in monitoring communication from other satellites to estimate bandwidth utilization.

Dr. L. Brad King, Richard and Elizabeth Henes Endowed Professor (Space Systems), Mechanical Engineering-Engineering Mechanics

“Ten university teams were in attendance and of the teams, we were among three of the schools to be selected to move forward. We now move on to ‘Phase B’ of the program and have a guaranteed launch opportunity with substantial funding to complete the design and integration of our spacecraft,” says Matthew Sietsema, Chief Engineer for the Aerospace Enterprise.

As a result of this award, the Aerospace Enterprise will soon have three satellites in space. Stratus, a climate monitoring satellite that determines cloud height and cloud top winds, was set for a March 2021 launch date. However, it was delayed due to the pandemic and is planned for launch in 2022. Oculus, an imaging target for ground-based cameras for the Department of Defense, was launched in June 2019.

“The Enterprise has remained on the same trajectory and has been very successful by all measures,” remarks King. “Students do a great job managing themselves and the leadership to replace themselves as they graduate and new members move up. It’s a challenge to juggle more than one satellite, but our students have remained focused and hard working while managing several projects and it’s a testament to their tenacity.”

Creating real-world, hands-on learning opportunities for around 100 students per semester, the Enterprise serves as a stepping stone for many as they launch their careers.

“Our students, even if they aren’t in leadership roles, do well securing positions in the aerospace industry. We tend to perform well because we offer a three-year, long-term program, which allows our students to maintain the situational knowledge required to solve complex problems.”

—Dr. Brad King

Challenging Structure: $15M US-COMP Now in Year Five

Professor Greg Odegard is the John O. Hallquist Endowed Chair in Computational Mechanics, Mechanical Engineering-Engineering Mechanics, Michigan Tech

Leading the charge in developing a new lighter, stronger, tougher polymer composite for human deep space exploration, the Ultra-Strong Composites by Computational Design (US-COMP) institute under the direction of Dr. Greg Odegard has pivoted with agility during their final year of a five-year project. 

The NASA-funded research project brings together academia and industry partners with a range of expertise in molecular modeling,manufacturing, material synthesis, and testing.

“When we began developing these ultra-strong composites, we weren’t sure of the best starting fibers and polymers, but over time we started to realize certain nanotubes and resins consistently outperformed others,” says Odegard. “Through this period of development, we realized what our critical path to maximize performance would be, and decided to focus only on that, rather than explore the full range of possibilities.”

US-COMP PARTNERS

  • Florida A&M University
  • Florida State University
  • Georgia Institute of Technology
  • Massachusetts Institute of Technology
  • Pennsylvania State University
  • University of Colorado
  • University of Minnesota
  • University of Utah
  • Virginia Commonwealth University
  • Nanocomp Technologies
  • Solvay
  • US Air Force Research Lab

For the past 21 years, scientists around the world have invested time, money, and effort to understand carbon nanotubes. But the islands of knowledge remain isolated in a vast sea of unknown behavior.

“When we started the project, we were confident we were going to put effort into getting the polymers to work well. The last thing we expected was the need to focus so much on the carbon nanotubes—but we’re putting effort there, too, using modeling and experimental methods,” Odegard notes.

The challenge when working with carbon nanotubes is their structure. “Under the most powerful optical microscope you see a certain structure, but when you look under an SEM microscope you see a completely different structure,” Odegard explains. “In order to understand how to build the best composite panel, we have to understand everything at each length scale.” 

The US COMP Institute has created dedicated experiments and computational models for the chosen carbon nanotube material at each length scale. “We can all see the different parts in our sub-groups and then we communicate that to the rest of the team, building a more complete picture from the little pictures at the individual scales,” he says. “We found the hierarchical modeling approach is hard to make work and what works best is a concurrent approach. We each answer questions at our own length scales, feed our findings to manufacturing, and then see how they in turn tweak the processing parameters.”

“We’ve achieved a remarkable workflow and a new model for collaboration.”

—Michigan Tech ME-EM Professor Greg Odegard

Achieving their Year Four goal to understand the internal structure of the carbon nanotube material, the institute has shifted focus to surface behaviors. As part of the project, they are tasked with bringing the carbon nanotube material together with the final selected polymer.

“We are looking at the surface treatment and how to get it to best work with the polymer of choice. We are excited to expand our scope of machine learning methods to better understand the carbon nanotube material. This accelerates our understanding of how processing parameters impact the structure, and how that ultimately impacts the bulk material properties.”

While machine learning has been part of the project scope from the beginning, the computational team is using their collected data to build a series of training sets. “The training sets will allow us to perfect our algorithms, learn from them, and hopefully influence product performance—potentially illuminating patterns we didn’t even see,” Odegard explains.

As the project draws to a close this year, the team continues to analyze their objectives set by NASA, which focus on producing a material that offers triple the strength and stiffness of the current state-of-the-art. As Odegard puts it, “The objectives set on this project are difficult to achieve. We knew that when we started. Regardless of whether we meet the numbers, as a group we have been able to push the envelope way beyond where we started in 2017—expanding the performance in a very short time period. This was made possible through remarkable collaboration across the institute.”