ACMAL Welcomes EOF Lab Assistants Zoe Hoffman and Maci Dostaler

We would like to officially welcome our two new lab assistants: Zoe Hoffman and Maci Dostaler. Also, congratulations to our previous senior lab assistant, Aleister Kerr. Aleister has taken a new position off campus and will no longer be working with us.

Zoe Hoffman

Zoe Hoffman is a current student at Michigan Tech majoring in Medical Laboratory Science with a minor in Pre-Health from southeast Michigan. She has always found the idea of working in a laboratory fun and likes to assist in the ACMAL‌ unit.

Maci Dostaler is currently an undergraduate student in Michigan Tech’s Biomedical Engineering program. She has lived in the Copper Country all of her life and is a proud first-generation college student. After graduation, she is hoping to work with imaging and non-invasive lasers. She is involved deeply around campus from volunteering to Greek life! In her free time she loves to challenge herself in snowboarding competitions both throughout the midwest and nationally.

You can contact Maci and Zoe if you need assistance with sample preparation or coating.

Teachers in Action—Dr. Edward Laitila

Edward Laitila
Edward Laitila

On Teaching Critical Thinking

Dr. Edward Laitila is a kind and humble science teacher who cannot be appreciated enough for his dedication to the advancement of science and the education of students. Over the years he has developed methods of analysis and processes for material development that are unique, practical, and yield powerful results. His way of teaching takes extra time to convey not only knowledge, but to impart skills in critical thinking that are too-often absent from a regular education. For his astounding work over many years, it is a pleasure to state just how valuable an asset he has been to Michigan Tech, to students, and to the scientific community.

Professor Laitila teaches courses in crystallography, diffraction, and materials forensics within the Materials Science and Engineering department. His official titles and positions are Senior Research Engineer/Scientist II and Adjunct Assistant Professor. His main duties are to act as the manager and sole employee of the X-Ray Facility, which operates under the Applied Chemical and Morphological Analysis Laboratory (ACMAL). There, he manages, operates and repairs the various X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) equipment.

Research in X-Ray Diffraction

Dr. Laitila started running the X-Ray Facility in 1983. At that time he had a two-year electrical engineering degree. He then obtained a bachelor’s degree and spent the next 20 years researching and working. Eventually he found extra time to write a report on his years of research and to finish his PhD. He has many undergrad and graduate students doing research for him. He also teaches classes and helps students with planning their own research experiments and writing research papers. He now has nearly 40 years of experience in XRD.

XRD is a process of metrology which characterizes a material by measuring the size of, and pattern to, its atomic structure. X-rays are waves, and crystalline materials are made up of periodic arrangements of atoms in a crystal lattice structure. Every crystalline material has a pattern that is unique, referred to as a diffraction fingerprint. XRD involves wave behavior similar to light diffraction, such as that seen in the double slit experiment. The x-ray waves travel through spacing and can constructively or destructively interfere with each other, which results in the unique pattern. This produces a pattern of peaks and dark sections which can be analyzed to determine the material structure and the distance between the atoms themselves. Through XRD researchers can obtain pinpoint accuracy of a material’s lattice structure, chemical composition, and phase composition.

Recent Breakthroughs

Dr. Laitila’s research interests are X-ray diffraction theory and its many applications, including mechanical alloying, intermetallic materials, physical metallurgy, nanoscale materials, materials characterization, additive manufacturing, and powder metallurgy. His latest published research was featured in the journal Powder Diffraction, Vol. 23, Issue 2 and was entitled “Employing X-ray scattering to characterize materials with grain sizes in the nano-regime.” In it he explained his creation of a new analytical technique for measuring the number of atoms in the grain boundaries of a nanoscale material. He was chosen for publishing after giving a talk at an annual X-Ray powder diffraction conference. On that work, he remarked, “Even though I did it on one material, I showed that this could be applied to anything.” From that research he is now working on a process which can make iron directly from iron ore without a need for using carbon. Such a process is exciting because it could revolutionize the steel industry in a way that is net positive for earth’s climate.

In recent research Dr. Laitila has come up with a process for making nano-composites. With his novel method it is simple to vary the amount of a second phase by varying the milling time. He has dubbed it Mechanonanosynthesis. He explained that it will be ideal in the creation of powders for additive manufacturing.

Ed Laitila stands near equipment while he is teaching.
Ed Laitila instructs near the powder diffractometer.

Pioneering the Work

Dr. Laitila went into detail about some interesting projects he has done over the years. He explained that in 1983 the diffractometers were all analog machines, and that only a couple of types had been automated. The lab worked with a teletype, which put little holes on tape that would collect the data. Researchers would then put those in a mainframe computer to do analysis. He was asked in ‘84 if he could interface the diffractometer with an early-model PC, which had an 8088 processor. He used Basic to code an MS-DOS program for the interface. He laughed as he recalled the story, saying, “I got it to work, and got it to collect data, and then we bought an automated system.”

The professor describes himself as a big proponent of critical thinking. He explained, “I honestly believe we have got a major problem in our education system, because we teach knowledge instead of teaching how to think. Teachers here have critical thinking skills but we don’t usually focus on that. When a student comes to me with a question I try to return with a question that forces them to think of a way to answer their own question. Usually they have the knowledge but they don’t know how to piece it together. I try to piece things together from different subjects and how those things combine in material science. I try to take every opportunity to teach.” He explained that his favorite part of teaching is “seeing the light go on when a student gets the subject.”

Outreach in Materials

In addition to all his other duties, Dr. Laitila spends extra time teaching teenagers about science. He has run a session, as part of the Women in Engineering and Engineering Scholars program, for many years. Each summer for more than 50 years, Michigan Tech Summer Youth Programs (SYP) has welcomed to campus more than 1,000 youth from grades 6–11, from across the country and around the world. SYP students come for week-long, hands-on, experiential learning in one or more of their 50+ week-long explorations in science, technology, engineering, and mathematics (STEM), humanities, and law. Dr. Ed is a favorite among many students, especially those in the SYP. Last year, when students were finishing SYP and were asked what program was their favorite, they chanted Ed’s name.

Be the Catalyst

Dr. Edward Laitila is a catalyst for the process of science. He is a man that makes the magic happen. He is a student favorite, an expert in XRD, and a valuable researcher. Anyone interested in doing work with Edward or using the equipment in his lab should contact him or get in touch with ACMAL Director Elizabeth Miller for more information. Remote teaching and research are available. If you are a student with a project that requires XRD or are interested in helping Dr. Laitila with his research, there may be opportunities available to you.

There is no better place to get involved in some exciting research!

By Joshua Jongema.

ACMAL Holiday Schedule

ACMAL will have limited hours over the upcoming holiday break.

During the week of December 19th-23rd, the labs will be open with limited staffing. The university, including ACMAL, will be closed on Dec 26th through 31st.  The building will be locked on those days. Unrestricted users will still have access to the building and labs. 

I will be out of the office but in the area, for the next two weeks. Josh King and Zoe Hoffman will be out as well.  Dr. Erico Fritas will be available through Wednesday Dec 21st. Dr. Ed Laitila, Dr. Tim Leftwich, Aleister Kerr, Maci Dostaler will be available by appointment.

If there are problems contact us.  Our contact information is:

Liz: 906-370-6538
Ed: 906-369-2041
Erico: 906-299-2714
Tim: trleftwi@mtu.edu

Happy Holidays,

Elizabeth Miller

Student Team Shares Exciting Images

A materials science and engineering team of students Sonja Blickley, Tori Nizzi, Anna Palmcook, and Austin Schaub were sponsored by Hobart Brothers LLC. (Hobartbrothers.com) to develop a new process that has yielded some exciting results. Working with Dr. Erico Freitas, operator of the Titan Themis Scanning Electron Microscope, these students used the FEI 200kV Titan Themis Scanning Transmission Electron Microscope (STEM) to produce some awesome images of a welded material. They have granted special permission to show these pictures here, despite wishing to keep their work and the composition of their material confidential.

Micrograph with 500 nm scale showing dotted features on larger grains with boundaries.
Image 1 – This image shows a dispersed material within a matrix on the nanometer scale.
Micrograph on the 200 nm scale showing some of the dot features and the texture of the material.
Image 2 – This image is also a section of the first, zoomed in 70,000 times! To achieve this resolution the team used a High-Angle Annular Dark Field (HAADF) imaging technique.
Micrograph at the 10 nm of the dot feature, with a zoom showing its atomic structure.
Image 3 – This image is a section of the first, zoomed in 1,600,000 times! This was also taken using HAADF.

This team is very excited about their results, which help to drive the science of materials and engineering forward. Congratulations to them for their hard work paying off!

By Joshua Jongema.

New Environmental Scanning Electron Microscope Proposal

Schematic of the microscope interior with specimen chamber, gun, pump, and gas valve marked.

Basic ESEM gas pressure stages, by Gerry Danilatos.

The Department of Defense (DoD) announces the Fiscal Year 2023 Defense University Research Instrumentation Program (DURIP). I’m excited to share that the 2023 DURIP selections have been announced and our proposal for a new Environmental Scanning Electron Microscope is recommended for award. All indications are that it will be funded. Congratulations to Dr. Bruce Lee (PI), Dr. Paul Sanders, Dr. Trisha Sain, Dr. Kazuya Tajiri, and Dr. Stephen Techtmann. Once funded, the new instrument will be housed in ACMAL and available for use by the MTU research community.

The timing is still TBD but since the project should be completed within a year we are starting the planning process to finalize the equipment purchase. However, there is still an opportunity to add capabilities to the instrument, especially if cost share can be contributed. Some possible additions include: a windowless EDS detector for light element (including Li) analysis, tensile stage, cryo stage, etc.

Below is a summary of the capabilities of the proposed new SEM.

Summary of the Capabilities and Functions of the Proposed FE-ESEM

Instrument

  • Environmental or Variable Pressure Scanning Electron Microscope

Electron Source

  • Field emission gun assembly with Schottky emitter source

Voltage

  • 20 V to 30,000 V

Resolution at 30 kV

  • High-vacuum Mode: 1.0 nm (SED) and 2.5 nm (BSED)
  • Low-vacuum Mode: 1.3 nm (SED) and 2.5 nm (BSED)
  • Environmental Mode: 1.3 nm (SED)

Magnification

  • 20x to 1,000,000x in a single quadrant

Ulti Max 170 EDS

  • Fast acquisition (quantitative > 400,000 cps and mapping > 1,000,000 cps)
  • Operate at low beam current, minimizing beam damage (3.5–5 kV)
  • High sensitivity for light element analysis

Symmetry S2 EBSD

  • High-speed analysis (indexing > 4,500 patterns per second)
  • High sensitivity >800 patterns per second/nA
  • Operates at low beam currents

Heating Stage

  • In-situ experimentation up to 1,100°C
  • Compatible with SE, BSED, EDS & EBSD detectors

Add Your Input

If you have any suggestions for capabilities or would like to discuss please contact Liz Miller by December 15th.

The Principal Investigator is Bruce Lee for research in additive manufacturing, materials development, and plastic waste recycling. The funding agency is the Office of Naval Research. DURIP is designed to improve the capabilities of accredited United States (U.S.) institutions of higher education to conduct research and to educate scientists and engineers in areas important to national defense, by providing funds for the acquisition of research equipment or instrumentation.

Attn: Sputter Coater Users

The target on the sputter coater has temporarily been changed from Pr/Pd Cr. There are special directions for using the Cr target (see detailed instructions below). The major differences are an increase in pump time prior to starting the coating cycle, a change in the material density, and a change in the sputter current. If you have any issues please let me know.

Regarding thickness, remember that 1-2 nm of coating is ideal.