Category: Civil, Environmental, and Geospatial Engineering

Tau Beta Pi Honor Society at Michigan Tech initiates 39 new members

Each chapter of Tau Beta Pi has its own bent statue. On campus at Michigan Tech campus it is located between Rekhi Hall and the Van Pelt and Opie Library.

The College of Engineering inducted 38 students and one eminent engineer into the Michigan Tech Michigan Beta chapter of Tau Beta Pi this academic year.

A nationally-recognized engineering honor society, Tau Beta Pi is the only one that recognizes all engineering professions. Members are selected from the top eighth of their junior class, top fifth of their senior class, or the top fifth of graduate students who have completed 50 percent of their coursework.

Tau Beta Pi celebrates those who have distinguished scholarship and exemplary character and members strive to maintain integrity and excellence in engineering. The honor is nationally recognized in both academic and professional settings. Alumni embody the principle of TBP: “Integrity and Excellence in Engineering.”

The new Tau Beta Pi logo in blue, with Tau Beta Pi symbol, "the bent" which resembles an old watch winding key.

Fall 2020 Initiates:

Undergraduate students
Evan DeLosh, Mechanical Engineering
Nolan Pickett, Mechanical Engineering
Ben Holladay, Electrical Engineering
Jacob Stewart, Civil Engineering
Malina Gallmeyer, Environmental Engineering
Caleigh Dunn, Biomedical Engineering
Mikalah Klippenstein, Electrical Engineering
Savannah Page, Biomedical Engineering
Katie Smith, Chemical Engineering
Cole Alpers, Mechanical Engineering
Ben Pokorny, Mechanical Engineering
Kyrie LeMahieu, Mechanical Engineering
Anna Hildebrandt, Materials Science & Engineering

Graduate students
Shankara Varma Ponnurangam, Mechanical Engineering
Koami Soulemane Hayibo, Electrical Engineering
Kaled Bentaher, Chemical Engineering
Nicholas Hendrickson, Mechanical Engineering

Spring 2021 Initiates:

Undergraduate students
Anders Carlson, Mechanical Engineering
Brian Geiger, Mechanical Engineering
Emily Street, Mining Engineering
Jacob Lindhorst, Mechanical Engineering
John Benz, Mechanical Engineering
John Hettinger, Computer Engineering
Joshua King, Materials Science & Engineering
Laurel Schmidt, Mechanical Engineering & Theatre Technology
Matthew Fooy, Chemical Engineering
Matthew Gauthier, Mechanical Engineering
Max Pleyte, Biomedical Engineering
Nick McCole, Engineering
Nick Niemi, Biomedical Engineering
Tom Morrison, Chemical Engineering
Zach Darkowski, Mechanical Engineering

Graduate Students
Aiden Truettner, Chemical Engineering
Iuliia Tcibulnikova, Geological & Mining Engineering & Sciences
Rajat Gadhave, Mechanical Engineering
Ranit Karmakar, Electrical & Computer Engineering
Sreekanth Pengadath, Mechanical Engineering
Fnu Vinay Prakash, Electrical & Computer Engineering

Professor Tony Rogers, Michigan Tech

Eminent Engineer
Dr. Tony Rogers, Department of Chemical Engineering

Above and Below the Mackinac Bridge: Kim Nowack and Amy Trahey

Mackinac Bridge Steeplejack. Photo by Tim Burke, MDOT

Amy Trahey and Kim Nowack generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

These two extraordinary fellow civil engineers and friends who each know the Mackinac Bridge, aka Mighty Mac—one of the world’s leading suspension bridges—like the back of their hand. Together they explain just what it takes to properly care for such a huge gem, the single greatest asset of the state of Michigan.

Kim Nowack is executive secretary of the Mackinac Bridge Authority. Amy Trahey is president and founder of Great Lakes Engineering Group. Both are graduates of Michigan Tech, too: Nowack earned her BS in civil engineering in 1985, and Trahey earned hers in 1994.

Michigan’s Mackinac Bridge at Sunset

Nowack is ultimately responsible for its safety, operation and maintenance. Putting it mildly, Nowack has vast experience and familiarity with the Mackinac bridge, nearly 20 years worth, and then some.

Prior to her tenure at the bridge, Nowack held several positions with the Michigan Department of Transportation (MDOT), including stints as a general engineer with the department’s construction division in Kalamazoo; project design, construction and assistant resident engineer in St. Ignace; and delivery engineer at MDOT’s Newberry Transportation Service Center (TSC).

Kim Nowack

In 2002, she became chief engineer for the Mackinac Bridge Authority, and was appointed to the position of Executive Secretary/CEO of the Mackinac Bridge in 2019. She is the first woman to hold either of these positions in the Bridge Authority’s 60-plus year history.

Nowack frequently gives presentations about the bridge to fellow engineers, aspiring engineering students, and middle and high school students interested in the STEM fields. Recently in recognition of that effort, Nowack received the 2021 Felix A. Anderson Image Award from the American Council of Engineering Companies (ACEC) of Michigan, noting her contributions to enhancing the image of the engineering profession. 

Joining in will be Audra Morse, professor and chair of Michigan Tech’s Department of Civil and Environmental Engineering. Morse is also a Fellow of ASCE, The American Society of Civil Engineers.

“I’m thrilled to have been selected for the Anderson award,” she said. “It’s amazing to be the first female honored this way. It’s been so rewarding to be an ambassador for the bridge and the civil engineering profession throughout my years at the Mackinac Bridge Authority.”

Trahey nominated Nowack for the award. “Kim is the epitome of why civil engineering is so awesome,” she said. “Kim has been an inspiration to me personally as a fellow civil engineer and to many others in the industry, too.”

At age 28, Trahey founded Great Lakes Engineering Group (GLEG), a civil engineering consulting firm. GLEG’s core business: everything bridges. The firm has been successful in providing bridge design, bridge inspection, and bridge construction engineering services for state and local governmental agencies as well as private clients. Trahey has worked on some of the largest and most complex bridges in the state of Michigan including I‐75 over the Rouge River, the Belle Isle Bridge, the Gross Ile Bridge, the International Bridge, and the Houghton-Hancock Lift Bridge.

In 2012 Trahey, along with other engineers and divers at Great Lakes Engineering Group, performed their first underwater safety and structural inspection of the Mackinac Bridge. 

Amy Trahey

“This opportunity was a defining moment in my career,” she said. “It brought my journey full circle and provided a true sense of fulfillment. If you can dream it…you can do it!”

In 2017 Trahey earned her SPRAT certification (Society of Professional Rope Access Technicians), which means she can use ropes to inspect difficult to access bridges and climb bridges. “It was the most physically and mentally challenging training I have experienced to date,” she says.

In 2019 Governor Gretchen Whitmer appointed Trahey to the Mackinac Bridge Authority. Amy is now vice chair of the Mackinac Bridge Authority and chair of the Finance Committee—a responsibility that Trahey takes very seriously, and enjoys even more.

“A bridge is a structure that spans obstacles, providing safe passage over something that is otherwise difficult or impossible to cross. It’s a soaring metaphor that captures my spirit.” she says. “I try to see obstacles not as obstacles, but as opportunities to solve problems and connect people. “To me, the Mackinac bridge is not only an iconic structure that resonates with all Michiganders—it proves that engineering has no limits, and it’s all about connecting people.”

An avid diver, Amy Trahey inspects Michigan bridges as part of her profession.

Amy, how did you first get involved in engineering. What sparked your interest?

I was born and raised in Lansing, Michigan and lived in the Upper Peninsula for 4 years while attending college at Michigan Tech. I knew I wanted to be a civil/structural engineer, after the years driving to the U.P. over the Mackinac Bridge, seen in all its glory when we would take the ferry rides to Mackinac Island, as well. Chicago also inspired me with its movable bridges along the Chicago River and its soaring buildings. I feel grateful and fortunate to have found my passion (bridges) so early in my career. As a result I have realized my goal to climb to the top, and dive to the bottom of many of Michigan’s most iconic bridges. From the Houghton‐Hancock lift bridge and the Zilwaukee bridge to the International Bridge in Sault Ste. Marie, the Blue Water Bridges, and the gem of the state of Michigan–the Mackinac Bridge.

The Trahey Family

Family and hobbies?

Rialato Bridge, Venice, Italy one of the oldest bridges over the Grand Canal, in a City that has over 600 bridges!

I’ve been married to my husband, Brian for 22 years and we have 2 sons, Ty and Quinn. We live in Grand Ledge, and share a family cottage on Drummond Island in the Upper Peninsula. I like to hike, ski, dive, bike, travel, and practice yoga and meditation. I also serve on the Michigan Department of Education, Special Education Advisory Committee, a committee that is near and dear to my heart and advocates for the rights of students with disabilities such as my son, Quinn, who is Autistic. In 2012 Quinn started planning family trips to iconic locations across the world. Seeing the world through his unique lens is inspiring and we are grateful for his perspective. He has quite literally, opened up our world. 

Kim on the tower!

Kim, how did you first get involved in engineering? What sparked your interest? 

My high school teachers lead me into engineering based on my abilities in high school.  I’m so thankful I had forward looking teachers that thought females should pursue whatever they were interested in.  I didn’t know what kind of engineering to go into, but was coached that I had an aptitude to go down the engineering path. I wanted to find a career that used my knowledge and skills to their maximum advantage. And my Mother was very supportive for me to reach as high as I could in life (my father died when I was 11). 

Kim with her daughter, Angela: “Good times!”

Family and hobbies?

I grew up in Grand Rapids and now live in Ignace, close to the bridge. I’m an avid reader, in several book groups. I knit, and I’m in a quilt group, too. I have a daughter, Angela, and two toddler granddaughters. I love spending time with them as much as possible. One of my best memories is with Angela. She was my little cheerleader and traveled with me to Houghton when I taught at summer youth programs. I will never forget her sitting in the lecture hall with the students and giving me a thumbs up before my show when she knew I was nervous. 

Play Mackinac Bridge drone footage video
Preview image for Mackinac Bridge drone footage video

Mackinac Bridge drone footage

MDOT photographer Tim Burke recently assisted a Japanese production company shooting a documentary about one of the Mackinac Bridge Authority’s steeplejacks. Here is some of the footage shot using a drone.

Michigan Tech’s NSBE Student Chapter Will Reach 1,850 Detroit Middle and High School Students (Virtually!) During their 10th Annual Alternative Spring Break

Andi Smith is leading Alternative Spring Break 2021 for Michigan Tech Chemical Engineering student

Eleven members of Michigan Technological University’s student chapter of the National Society of Black Engineers (NSBE) Pre-College Initiative (PCI) plan to present to EVERY science class at Chandler Park Academy in Detroit—a total of 74 classes and 1850 students—during their 10th Annual Alternative Spring Break in Detroit from March 8-10. 

Their mission is twofold: encourage more students to go to college, and increase the diversity of those entering the STEM (Science, Technology, Engineering, Math) career pipeline.

NSBE Pre-College Initiative 2021 Alternative Spring Break will be virtual this year.

The following NSBE students are participating:

Andi Smith – Chemical Engineering
Jasmine Ngene – Electrical Engineering
Jalen Vaughn – Computer Engineering
Kylynn Hodges – Computer Science 
George Ochieze – Mechatronics
Catherine Rono- Biological Science
Christiana Strong – Biomedical Engineering
Trent Johnson – Computer Engineering
Meghan Tidwell – Civil Engineering
Oluwatoyin Areo – Chemical Engineering
Kazeem Kareem – Statistics

The NSBE classroom presentations are designed to engage and inspire diverse students to learn about and consider careers in engineering and science by interacting with role models from their home town (most of the participating NSBE students are from the Detroit area).

Their effort is designed to address our country’s need for an increased number and greater diversity of students skilled in STEM (math, science, technology, and engineering). This outreach is encouraged by the NSBE Professional Pre-College Initiative (PCI) program which supports and encourages K-12 participation in STEM. 

At Michigan Tech, NSBE student chapter outreach is funded by General Motors and the Department of Civil & Environmental Engineering. Effort is coordinated by members of the NSBE student chapter, with assistance from Joan Chadde, director of the Michigan Tech Center for Science and Environmental Outreach.

High school students are informed of scholarships available to attend Michigan Tech’s Summer Youth Programs, as well high school STEM internship opportunities at Michigan Tech.

For more information about the Michigan Tech NSBE student chapter’s Alternative Spring Break, contact Joan Chadde, Director, Center for Science & Environmental Outreach, Michigan Technological University, email jchadde@mtu.edu or call 906-369-1121.

Happy Engineer’s Week 2021!

Let’s imagine a better tomorrow. Join us!

This week, we’re celebrating National Engineers Week (Feb. 21-28). Everyone’s invited to special events on campus sponsored by Tau Beta Pi, the Engineering Honor Society student chapter at Michigan Tech.

Founded by the National Society of Professional Engineers in 1951, Eweek is celebrated each February around the time of George Washington’s birthday, February 22, because Washington is considered by many to be the first U.S. engineer.

At Michigan Tech, the week is celebrated with special events on campus all hosted by student organizations. Everyone is welcome! Please feel free to stop by and check out Eweek events as your schedule allows:

Monday, Feb. 22
Brainteasers—give your brain a mini-workout, courtesy of Michigan Tech’s Systems Engineering Association (SEA), 11am-2pm in the Dow Lobby.

Some founders of SEA, Michigan Tech’s relatively new Systems Engineering Association.

Tuesday, Feb. 23
Build with Built World Enterprise, 6-7 PM
Online, Zoom: https://michigantech.zoom.us/j/88350890241

Built World Enterprise at Michigan Tech

Wednesday, Feb. 24
Michigan Tech Engineering Alumni Panel, hosted by Tau Beta Pi
4-6 PMOnline, Zoom: https://michigantech.zoom.us/j/89023074247
Submit your questions in advance: https://docs.google.com/forms/d/e/1FAIpQLSdFvHtUjVrpO_iMmrQWel78S7D2BXjCNhROo4CoYLwSbJA5nw/viewform?usp=sf_link

Julia Zayan
Julia Zayan ’15, General Motors (Chemical Engineering)
Rebecca Mick
Rebecca Mick ’09, Amcor (Chemical Engineering)
Quinn Horn
Quinn Horn ’93, ’95, ’98, Exponent Consulting (Materials Science and Engineering)

Thursday, February 25
Metal foundry in a box with Materials United, 3-5 PMB, on campus, outside, between the M&M Engineering Building and Douglas Houghton Hall.

Foundry in a Box. Make something small, come pick it up later, after it cools!

Nationwide, Eweek is a formal coalition of more than 70 engineering, education, and cultural societies, and more than 50 corporations and government agencies. This year’s theme: Imagining Tomorrow. Dedicated to raising public awareness of engineers’ positive contributions to quality of life, Eweek promotes recognition among parents, teachers, and students of the importance of a technical education and a high level of math, science, and technology literacy.

One important goal: to motivate youth to pursue engineering careers in order to provide a diverse and vigorous engineering workforce.

Due to the pandemic, some E-Week events won’t be possible this year. One thing we’ll greatly miss is the traditional Michigan Tech E-Week cake, offered to all on campus by the Department of Engineering Fundamentals. The cake will be back, though: We look forward to E-Week 2022!

Russ Alger: Snow 101

Russ Alger and Tony Kunnari generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

Snowy crop circle of some sort? No, it’s part of the test course at Michigan Tech’s Keweenaw Research Center.

What are you doing for supper this Monday night 2/8 at 6 ET? Grab a bite with Dean Janet Callahan and Russ Alger, Director of the Institute of Snow Research at Michigan Tech.

Russ Alger: “Growing up in the Copper Country helped to make me like snow for sure.”

Alger knows about snow. He’s one of the world’s top go-to guys on cold climate roads and driving, with 45 years of experience and counting. During Husky Bites, he’ll talk about the natural properties of snow as well as some of the ways that snow can be used for engineering purposes.

Also joining in will be Toby Kunnari, Test Course Manager at the Keweenaw Research Center. The KRC’s test course is spread out over 1,000 acres just a few miles away from campus at Michigan Tech.

Ever since earning his BS and MS in civil engineering Michigan Tech, Alger has been working with vehicles and terrains. If there’s a way to alter strength and friction parameters on the surface of a terrain to enhance mobility, Alger can make it happen.

Whether it involves mobility in snow, or the development of pavements made entirely from snow, Alger and other Michigan Tech engineers and scientists at the Institute of Snow Research are ready to tackle the problem. They are also experts in winter maintenance of roads and runways—both anti-icing and deicing.

A tank makes its way through a custom test course at Michigan Tech’s Keweenaw Research Center.

“The unique weather conditions on Michigan’s Keweenaw Peninsula, coupled with our large array of equipment and facilities, makes the Institute the right place to bring your research questions,” he says.

Alger studies the deformation of soil and snow particles under vehicle loads. He has characterized these terrains using standard physical property measurement techniques as well as through the use of bevameters, automated penetrometers, calorimeters, high speed imaging, and a number of other methods to extract data in harsh environments. (He’ll explain his toolbox during Husky Bites).

Alger holds a patent on a method he invented to “manufacture” snow pavements by mechanically altering the internal snow properties and developing high strengths in the snow pack.

Between 1994 and 2016 Alger took six trips to Antarctica, as part of a team that successfully scouted and created the first trail to the South Pole, needed as an alternative to flying in supplies. Every crevasse they discovered in the route had to be exposed and filled so tracked vehicles could safely pass over.

Alger took this image during one of his research trips to the South Pole. Pictured above: project leader John Wright works on the snow bridge above a crevasse nicknamed “Mongo”. The South Pole traverse team discovered the crevasse, and later filled it with snow. Mongo measured 32 feet wide, 82 feet deep with a snow bridge 25 foot deep.

During his last trip to Antarctica in 2016 Alger went to make one snow road better—a fifteen-mile stretch from Scott Base (New Zealand’s research center) to the Pegasus runway, where supplies and people arrive in cargo jets.

He used a special groomer he and his colleagues developed at the KRC. Called a snow paver, it has the near-magical ability to turn snow into solid roadway.

“The paver works by first chewing up the snow with a miller drum, which smashes the ice crystals so they will stick together,” Alger explains. “Then comes a vibrating compactor, to get all the air out of the snow. That action compresses it enough to make a pavement.”

At Michigan Tech Alger also invented a product called SafeLane, an epoxy-aggregate mixture that is applied to roads, bridge decks, walkways and parking lots to improve traction and safety during hazardous winter conditions. Now marketed by Cargill, the product is widely used.

It’s busy season at the Institute of Snow Research, but Alger took time from his hectic schedule to answer a few questions for us in advance of Husky Bites.

Have any snow questions of your own? Alger will answer questions live via Zoom on Monday Feb. 8 during his session. Join early at 5:45 for some extra conversation, or stay after for the Q&A.

Q: Are there any best practices for preparing roadways in winter?

A: Road supervisors and crews rely heavily on the weather forecast. Air temp, pavement temp, temperature trends, precipitation rates and total amounts, wind, time of day, and more all play into the decision making process. For example, if it is going to be below 15 degrees F, it is likely that crews would consider adding something like calcium chloride to the mix since it is better at colder temps. They might just use sodium chloride above that temp since it works well and is much cheaper. The amount of deicer needed also increases as temperature decreases and there is a point where it doesn’t pay to use deicer at all except for maybe as a “kicker” for sand applications.

Imagine doing your job on a snowmobile! That’s a pretty typical day for Russ Alger, director of Michigan Tech’s Institute for Snow Research.

Here in the UP, combining salt and stamp sands seems to work pretty well to help us get around amid all the snowfall. In most of Houghton County, stamp sand is used. It’s abundant, and the County owns some stamp sand property. On top of that, stamp sand is actually a pretty good ‘grit’ for this purpose. The grain size is right to result in traction, which is the purpose of sand. It isn’t too dusty, and most importantly, it is crushed rock, so it is angular. That means it has sharp edges that help it dig into icy pavements and grip tires.

The addition of a small amount of deicer helps the stamp sand piles from freezing up. It also helps the sand particles melt into the surface of the road and stick, making a layer that acts like a piece of sandpaper. This is a pretty effective way to increase grip of tires on the surface, which is the end goal of this operation.

Russ Alger knows snow. Join us at Husky Bites to learn from one of the world’s top experts.

Q: When did you first get into engineering? What sparked your interest?

A: I became interested in engineering at a very young age and have always loved my job and profession. My father, George Alger, was a civil engineering professor at Michigan Tech for many years. His expertise was in ice-covered rivers and cold regions engineering in general. Growing up in Dollar Bay and working with him on outdoor projects, as well as being an outdoorsman myself, pointed me down that path at a young age. In 1976, my Dad, along with Michigan Tech civil engineering professors Ralph Hodek and Henry Sanford established a new curriculum at Michigan Tech, Cold Regions Engineering. I started with them that very first year. Growing up in the Copper Country helped to make me like snow for sure.

Q: Hometown, hobbies, family?

A: I have lived outside of Dollar Bay, Michigan for most of my life. I love being outdoors and especially love hunting, fishing and cooking outside. I live with my wife and one of my sons—and enjoy doing things with all of my sons, daughters and grandchildren.

Read More

Snow Going for Road-Building Engineers in Antarctica

Michigan Tech Announces New Online Graduate Certificates in Engineering

Michigan Technological University is a public research university founded in 1885. Our campus in Michigan’s Upper Peninsula overlooks the Keweenaw Waterway and is just a few miles from Lake Superior.

Ready to propel your career forward in 2021? Michigan Technological University’s College of Engineering now offers 16 new online graduate certificate programs. Interested in taking a course soon? Spring 2021 instruction begins on Monday, January 11.

“One of our goals at Michigan Tech has been to expand online learning opportunities for engineers, to help them meet new challenges and opportunities with stronger knowledge and skills,” says Dr. Janet Callahan, Dean of the College of Engineering.

The certificates are offered by four departments within the College of Engineering at Michigan Tech: Civil and Environmental Engineering, Mechanical Engineering-Engineering Mechanics, Biomedical Engineering, and Geological and Mining Engineering and Sciences. Several more engineering departments will join the effort in the near future.

“We have many more certificates in the works,” Callahan says. “We expect to have a total of 30 new online graduate certificates—including more than 90 courses online—by Fall 2021.

Dean Janet Callahan stands in front of the summer gardens on campus at Michigan Tech
Janet Callahan, Dean of the College of Engineering, Michigan Technological University

Students can sign up for a single course without committing to a certificate. “The courses are accessible and flexible to accommodate a busy schedule,” Callahan explains.

“These are the same robust courses taken by our doctorate and masters candidates, taught directly by highly regarded faculty, with outstanding opportunities to create connections,” she adds. “We invite working professionals to join these courses, and bring their own experiences to bear, as well as their challenges as part of the discussion.”

All courses will be taught online—many of them synchronously offered—with regularly-scheduled class meeting times. 

Obtaining certification from Michigan Tech in sought-after industry skills is a great way to accelerate and advance a career in technology, Callahan says. Students take a cluster of three courses to earn a certificate. “It’s a three-step approach for a deeper dive into the subject area that results in a credential.” 

Michigan Tech was founded in 1885. The University is accredited by the Higher Learning Commission and widely respected by fast-paced industries, including automotive development, infrastructure, manufacturing, and aerospace. The College of Engineering fosters excellence in education and research, with 17 undergraduate and 29 graduate engineering programs across nine departments.


Work full time or live far from campus? You can still learn from the world-class engineering faculty at Michigan Tech.

Michigan Tech faculty are accessible, offering an open door learning experience for students.

“We have a strong, collegial learning community, both online and on campus,” notes Callahan. “We’re also known for tenacity. Our faculty and graduates know how to deliver and confidently lean into any challenge.”

Michigan Tech’s reputation is based on those core strengths, Callahan says. “A certificate credential from Michigan Tech will be respected across many industries, particularly in the manufacturing sectors of the Midwest—and around the world. Michigan Tech engineering alumni are working in leadership positions across the United States and in 88 different countries.”

“Remember those ‘aha’ moments you had, back in your undergrad days, your backpack days, when things suddenly came together? It’s exciting, invigorating and fun to learn something new.”

Dean Janet Callahan, Michigan Tech


“Registration doesn’t take long,” she adds. “We have simplified the graduate application process for working professionals. You can apply online for free.”

Interested in taking a course soon? Spring 2021 instruction begins on Monday, January 11.

Need more time to plan? Consider Fall 2021. Instruction begins on Monday, August 30, 2021.

New! Michigan Tech online graduate engineering certificates and courses, with more to come!

  • Aerodynamics
  • Computational Fluid Dynamics
  • Dynamic Systems
  • Geoinformatics
  • Medical Devices and Technologies
  • Natural Hazards and Disaster Risk Reduction
  • Quality Engineering
  • Resilient Water Infrastructure
  • Structural Engineering: Advanced Analysis
  • Structural Engineering: Bridge Analysis and Design
  • Structural Engineering: Building Design
  • Structural Engineering: Hazard Analysis
  • Structural Engineering: Timber Building Design
  • Pavement Design & Construction
  • Vehicle Dynamics
  • Water Resources Modeling

Learn about all graduate programs at Michigan Tech, both online and on campus, at mtu.edu/gradschool.

Pengfei Xue: Severe to Extreme: Modeling Climate Change and Coastal Hazards on the Great Lakes

Great Lakes meteotsunami: These photos of the Ludington North Breakwater on Lake Michigan were taken just 10 minutes apart on Friday, April 13, 2018. Photo by Todd and Brad Reed Photography, featured on MLive.com.

Pengfei Xue and Guy Meadows generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

What are you doing for supper this Monday night 11/30 at 6 ET? Grab a bite with Dean Janet Callahan and Civil and Environmental Associate Professor Pengfei Xue, Director of the Numerical Geophysical Fluid Dynamics Lab at Michigan Tech’s Great Lakes Research Center.

Associate Professor Pengfei Xue on campus at Michigan Tech

Catch a glimpse of the future during his session, “Severe to Extreme: Modeling Climate Change and Coastal Hazards on the Great Lakes.”

The Great Lakes are more like inland seas. From the cold depths of Lake Superior fisheries to the shallow algae blooms of Lake Erie, the bodies of water differ greatly from one another. Yet they are all part of one climate system. Together they contain one-fifth of the world’s surface freshwater.

Xue uses mathematical modeling to analyze and predict the short-term and long-term responses of that system to climate stressors. During Husky Bites, he’ll introduce the regional earth-system model he uses to understand and predict how the Great Lakes system responds to weather extremes and coastal hazards. 

Joining in as co-host for Husky Bites is Guy Meadows, who collaborates with Prof. Xue on the work.

We’ll get to see three modeled visualizations of the same storm passing by on Lake Superior. In each scenario, they’ll show and explain what could happen along the coast.

“The Great Lakes exert a strong influence on the physical, ecological, economic, and cultural environment in the region, across the nation, and internationally,” says Xue. “Human activities expose the system to multiple stressors. Climate change creates new risks and exacerbates existing vulnerabilities,” he adds.

Play Cuyahoga River Plume video
Preview image for Cuyahoga River Plume video

Cuyahoga River Plume

“This is a simulation of a numerical tracer released from the Cuyahoga River near Cleveland, Ohio. It shows how a river plume goes into Lake Erie and mixes with the lake water,” says Dr. Pengfei Xue.


“In my lab, we analyze and predict short-term events. We also project the long-term influence of climate change on the Great Lakes ecosystem. Our goal is to help inform decision-making and management. One of the important concepts in climate change, in addition to knowing the warming trend, is understanding that extreme events become more severe,” Xue says. “That is both a challenge and an important focus in regional climate modeling.”
It takes a supercomputer to run the calculations. Xue uses Superior, the supercomputer housed in the Great Lakes Research Center, to build high-fidelity models and detailed simulations for a region where more than 30 million people rely on the Great Lakes for water and other resources. 

“I do the science part, but I also want to apply my findings.”

Pengfei Xue

With his next generation numerical predictive models for the Great Lakes, Xue seeks answers to many “what-if” questions. “How will projected future climate change impact water levels, wave energy, sediment transport and shoreline damage?”

He also looks at short-term, episodic events like algal blooms and weather patterns.

His current research focuses on an Integrated Regional Earth System Model (IRESM, for short) for the Great Lakes region. The model consists of coupled atmosphere, lake, ice, wave, sediment, land surface, and biological components, and includes data assimilation and machine learning techniques. 

The bottom line: Xue seeks to better understand the processes in the Great Lakes and their impact on people.

Guy Meadows is Robbins Professor of Sustainable Marine Engineering in the Department of Mechanical Engineering-Engineering Mechanics at Michigan Tech. He joined Michigan Tech in June of 2012, to help establish the new GLRC. “This is a unique, amazing place. The future of Great Lakes research is based right here.”

“We are extremely fortunate to have Professor Xue at Michigan Tech and the Great Lakes Research Center,” says Professor Guy Meadows. “He has built very strong bridges both within the University and with our government research partners. Thanks to these partnerships, we have modeling of the Great Lakes running on Superior at a resolution not previously thought possible.

Meadows joined Michigan Tech in June of 2012, to help establish the new GLRC. “This is a unique, amazing place. The future of Great Lakes research is based right here.”

A bit more about Pengfei Xue

Prof. Xue’s modeling research experiences in other regions include Massachusetts Coastal Waters, Gulf of Maine, East China Sea, the Maritime Continent in Southeast Asia, and the Persian Gulf.

Prof. Xue recently joined Argonne National Lab as a joint appointee Scientist in the Environmental Science Division. His joint appointment will expand the already deep capabilities of both institutions. Michigan Tech’s GLRC Director Andrew Barnard agrees. “Dr. Xue’s collaborative work with Argonne will result in cutting-edge science and engineering solutions in predictive hydrodynamics.”

Prof. Xue, when did you first get into engineering? What sparked your interest?

I liked math when I was a little kid. I was very much influenced by my father. He was a high-school physics teacher and would often pose math- or physics-related questions to challenge me for fun.  Later when I was in college, I majored in mathematics and became very interested in how to apply math to helping answer some real-life questions. That’s how I got interested in numerical modeling and ended up what I am working on now.

Pengfei Xue arrived at Michigan Tech from MIT in 2013. Note the bare walls. He skipped the ritual of decorating his new office at first, preferring instead to immerse himself in the Great Lakes.

Hometown, Hobbies, Family? 

After finishing my doctoral study at UMASS-Dartmouth and post-doctoral work at MIT, I moved to Tech seven years ago. I live with my wife and two cute kids in Houghton. We enjoy spending time reading and playing together. You may see me up at Michigan Tech’s Student Development Complex working out or swimming, or out on the trails skiing—to relax and take my mind off work.

Read more:

Environmental Science Division of Argonne National Lab Welcomes Pengfei Xue

Weather the Storm: Improving Great Lakes Modeling

Guy Meadows: Shipwrecks and Underwater Robots

Where Modeling Meets Observations: Improving the Great Lakes Operational Forecast System

Video:

Play Building a Better Great Lakes Forecasting System video
Preview image for Building a Better Great Lakes Forecasting System video

Building a Better Great Lakes Forecasting System

Q&A with Gretchen Hein: Outstanding SWE Advisor at Michigan Tech

Could this be a future engineer exploring Dr. Gretchen Hein’s family farm?

In the words of Michigan Tech alumna Erin Murdoch, now an automation engineer at Kendall Electric: “I can’t think of anyone more deserving.”

Gretchen Hein is the recipient of a major award from the world’s largest advocate and catalyst for change for women in engineering and technology. During ceremonies held online earlier this month on November 5, 2020, Hein was honored by the Society of Women Engineers (SWE), with the SWE Outstanding Advisor Award. 

Hein is a senior lecturer in the Department of Manufacturing and Mechanical Engineering Technology and has served as the SWE Academic Advisor at Michigan Tech for the past 21 years. She teaches thermodynamics, fluid mechanics, and first-year engineering courses. She joined the faculty after earning her PhD in Environmental Engineering at Michigan Tech.

Gretchen Hein

Dr. Hein, how did you first find engineering? What sparked your interest?

When I was 5 years old, I wanted to be a garbage collector because they let us ride through the neighborhood on the back of the truck. That’s also why I wanted to be a farmer—after haying, we were allowed to ride on top of the hay back to the barn. Later, when watching the Apollo Missions, I wanted to be an astronaut, riding on a spaceship. I said so at school, but it was the 1970’s. I was told by teachers and other adults, not my parents, that girls could not be astronauts. No woman had done that before. Being stubborn, I stuck with wanting to be an astronaut.

In high school, I took all the drafting classes my high school had to offer—mechanical and architectural drafting. I loved them. I wanted to be an architect. I read books on Buckminster Fuller, Frank Lloyd Wright and IM Pei. During my senior year, my dad, a mechanical engineer, said I should look into mechanical engineering, so I did. It sounded like fun.

I applied to General Motors Institute (now, Kettering University) and interviewed at Allison Gas Turbine Division. Working in a plant that made helicopter engines felt a little like “astronaut” and “architect” combined. I was sold. I began working there two weeks after my high school graduation. After earning my degree in mechanical engineering, I stayed on as a project engineer until I left for graduate school.

Dr. Gretchen Hein, front and center, surrounded by students, family, colleagues and friends, just after receiving the 2020 Outstanding Faculty Advisor Award from the Society of Women Engineers


How did you happen to become a SWE advisor?

I was asked to be the SWE advisor when Dr. Sheryl Sorby became the first chair of the Department of Engineering Fundamentals, in 1999. I was new to teaching and unsure of the time commitment involved, so I talked with my colleague, MaryFran Desrochers, and we decided to be SWE co-advisors. We shared advising until 2005 when MaryFran left to spend more time with her family. She returned to campus when her girls were older and now works for Michigan Tech Career Services.

These days there are three SWE advisors: I am in the College of Engineering; MaryFran is our SWE liaison with Career Services, and Elizabeth Hoy at the Great Lakes Research Center helps us manage SWE finances. Our section counselor is alumna Britta Jost, New Product Introduction Manager at Caterpillar Inc. and member of Michigan Tech’s Presidential Council of Alumnae. I’ve always thought that the section was very strategic in choosing their advisors and counselor. We all work together well.

A cobblestone on campus at Michigan Tech shows the date Michigan Tech’s first SWE section was established on campus: 1976.


What do you know now, that you didn’t know then?

Over the past 20 years, my advising style has evolved and grown. At the beginning, I observed. As I learned what the section valued and where their interests were, I began to make suggestions. That’s how SWE’s annual Cider Pressing tradition began at my farm. Students wanted an event outside, and they wanted to meet my sheep, alpacas, ducks, chickens, dogs, cats, bunnies, rats, geckos and bees. Now, it’s the most popular social fall event where over 60 SWE members and friends come, press cider and meet the animals.

Michigan Tech members started to become active nationally in SWE. As I watched them grow, I felt that I needed to join them. I learned, through the students, that we can grow, expand our skills, and contribute, even by “standing in the background.”

Great times! SWE’s Cider Pressing tradition takes place each year at Dr. Hein’s farm. This photo is from 2016.


Have things changed for women engineers since then? If so, how?

One of the reasons I chose Michigan Tech for my doctoral studies was because of the friendliness of the faculty and students. It is still a strong characteristic of Tech. The number of women students, along with faculty, has increased over the past 20 years. There are more opportunities and different areas of study in engineering now. As time has passed, people who were less accepting of differences have left, and those who are interested in diversity and inclusion have become leaders.

The grit and independence of our SWE members haven’t changed. The students are still people who enjoy working, collaborating and learning together.


What is the best part about being an advisor?

The students—hands down! And this includes our graduates. For example, at WE19, I saw Anne Maher (a former SWE section president and member). It was like one of those sappy movies where two people run towards each other. I was so excited to see her and meet her mother. I get the same feeling in the fall when I see our students return to campus. I love to hear how their summer went, where they worked, what they did and what they will be doing at Tech. I always try to attend our fall Ice Cream Social, where we all meet new members. They bring so much excitement to the organization. It’s great to learn where they went to high school and why they came to Tech.

Dr. Hein uses duck feet to help teach thermodynamics.

Your happiest time so far?

My happiest time is reconnecting. Every time I attend a SWE conference, I see so many of our graduates. Frequently, they recall “Duck Day” when I bring a duck into ENG3200, Thermodynamics/Fluid Mechanics. It’s a fun day because students get to pet, hold and see a duck. It’s a learning day because the arteries and veins in the ducks’ legs exchange heat to help regulate the duck’s body temperature.

SWE section members celebrate with Dr. Gretchen Hein at the news of her SWE Outstanding Advisor Award.

What motivates you?

The students make Michigan Tech. They motivate me. Like most people with doctorates, I had taken no classes on how to help others learn. My goal was to create a classroom environment that encouraged learning and discussion. At first, I did not succeed, but I really wanted to be the type of instructor where students came to class, enjoyed the class and learned—probably in that order. I kept talking with the Jackson Center for Teaching and Learning (CTL) at Michigan Tech. I was one of the first instructors to use online videos and blended learning. My students had told me that they were willing to learn material outside of class if we worked through more problems in class, so I learned how to make my course more efficient, to gain that extra time. I began to tell stories in class about my family, my industrial projects, TED talks—anything that would grab their interest and keep them laughing and thinking. I focused on how the course material could be applied to their careers; I invited former students to come talk about their careers in class. Last but not least, I related how much I struggled with Thermo when I studied it in college.

“Dr. Hein is supportive of her students and does her best to ensure each of us have all the tools and resources to flourish, both academically and professionally. She teaches valuable life skills for navigating the professional world as a female engineer, and serves as an exemplary role model.”

Erin Murdoch ’17

Your advice for future engineers?

For me, this question is personal. My son will be graduating in the spring with a degree in electrical engineering from Michigan Tech.

My advice is this: Find what you enjoy and do it, but realize that there will be times when the job is not exciting or that the challenges seem insurmountable. When visiting companies and during the interview process, see if you can visualize working with the people and in that environment. Each company has its own personality and so do you. You want these to mesh well. Figure out what type of community you’re happy in. It’s much easier to go to work when you like where you’re at. Use your contacts and resources.

I encourage everyone to keep learning and exploring, both at work and personally. The great thing is that sometimes growth in one area results in growth in another.

What do you want others to know about Michigan Tech’s SWE section?

The SWE section at Michigan Tech values outreach. And their commitment to SWE continues long after they graduate. Many are involved in their professional section and at the national level.

Members of the local SWE section are holding a thank you letter-writing campaign to show Dr. Hein appreciation for all of the hard work she has put in to help it succeed, and to congratulate her on her award. Send your letters to us here, at this address.

Graduate School Announces Fall 2020 Award Recipients

Auroral activity

The Graduate School announces the recipients of the Doctoral Finishing Fellowships, KCP Future Faculty/GEM Associate Fellowship, and CGS/ProQuest Distinguished Dissertation Nominees. Congratulations to all nominees and recipients.

The following are award recipients in engineering graduate programs:

CGS/ProQuest Distinguished Dissertation Nominees:

Doctoral Finishing Fellowship Award:

Profiles of current recipients can be found online.

Michigan Tech SWE Chapter Makes It Their Mission to Give Back

child looks in wonder as a play-doh circuit lights up a small led light
Who knew! Play Doh can be used to complete a circuit!

The Society of Women Engineers (SWE) at Michigan Tech make it their mission to give back to the community and to spark youth interest in STEM-related fields.

“We’re always looking for opportunities to grow and make new connections, both as an organization on campus and as a member of the community,” says Michigan Tech SWE section president and mechanical engineering major Katie Pioch. “We love getting kids excited about STEM.”

The team gathered for a photo in Fall 2019. This fall gatherings have been mostly virtual for the Michigan Tech section.

This past year, Michigan Tech SWE students helped high school students at Lake Linden-Hubbell Schools form the first-ever SWENext Club. They also mentored two eCYBERMISSION teams, sponsored by the U.S. Army Educational Outreach Program.

SWENext enables girls ages 13 and up to become a part of the SWE engineering community as a student through age 18. SWENexters have access to programming and resources designed to develop leadership skills and self-confidence to succeed in a career in engineering and technology.  Although the program focuses on girls, all students are encouraged to get involved. 

Students in the Michigan Tech SWE section worked closely with a team of 8th graders from Lake Linden Hubbell schools–Jenna Beaudoin, Chloe Daniels, Rebecca Lyons, and Olivia Shank–to develop three hands-on electrical engineering outreach activity kits for SWENext-age students and elementary students, too. The girls worked on the activity kits in conjunction with the eCYBERMISSION Competition sponsored by the US Army Educational Outreach Program, earning an Honorable Mention award for their efforts.

The activities: Play-Doh Circuits for upper elementary students, and Paper Circuits and Bouncy Bots for middle school students. 

Play-Doh and Paper Circuits teach how parallel and series circuits work. Bouncy Bots involves a simple series circuit where a coin vibration motor—the kind used in cell phones and video game controllers—is connected to two 1.5 V batteries and adhered to a 4 oz medicine cup. When the circuit is operational, the device “bounces” across a surface.

Together with Michigan Tech’s Department of Electrical and Computer Engineering SWE students shared the activity kits with more than 400 students: regional Upper Michigan and Northern Wisconsin Girl Scouts; 5th-grade students at Calumet-Laurium-Keweenaw (CLK) schools; 4th-grade students at Hancock Elementary; and 5th-grade students at Lake Linden-Hubbell Schools. 

SWE students mentored Lake Linden-Hubbell eCYBERMISSION 6th grade team, SCubed (Super Superior Scientists). The team recycled school lunch food waste as a food source for pigs, earning an Honorable Mention in the eCYBERMISSION competition.

The Michigan Tech SWE section prepared two grant proposals, one for the SWE-Detroit Professional Section and the other for the Michigan Space Grant Consortium (MSGC), working closely with Michigan Tech’s ECE department. Both proposals were funded, enabling the students to create more activity kits and take them out into the local community.

The funding also allowed for the purchase of soldering tools, electronics components, and other supplies that will now be used to introduce an entire pipeline of students to electrical engineering topics.

High school students create heart rate monitor circuit boards, and also help mentor middle school students through the process of completing holiday tree boards. From there, high school and middle school students will be shown the Bouncy Bot activity; they will lead that activity for their school district’s elementary students. 

“Both SWE and ECE are excited for this “trickle-down” mentoring program,” says Liz Fujita, academic advisor and outreach specialist for Michigan Tech’s Department of Electrical and Computer Engineering. Due to the pandemic, SWE members cannot go to area schools. Fujita plans to resume school outreach once the pandemic ends.

Michigan Tech’s SWE Section developed a video describing their year-long outreach projects for SWE’s national FY20 WOW! Innovation Challenge. A portion of the video was created by high school junior Jenna Beaudoin, founding member of the Lake Linden-Hubbell Schools SWENext Club. For their exceptional outreach efforts, SWE awarded Michigan Tech second place in the challenge.

Gretchen Hein, senior lecturer in the Department of Manufacturing and Mechanical Engineering Technology is Michigan Tech’s SWE faculty advisor. “We really encourage our SWE section members to develop professionally and personally,” she says. Students work especially hard on their annual Evening with Industry event, which takes place each fall during Michigan Tech Career Fair.” The event, held just a few weeks ago, was virtual. Sponsors included Nucor, Marathon Oil, John Deere, Amway, Milwaukee Tool, Corteva and CWC Textron.

Gretchen Hein, MMET senior lecturer and Michigan Tech’s SWE section advisor

Hein and a group of ten Michigan Tech SWE section members traveled to the annual WE19 Conference in Anaheim, California, the world’s largest conference for women in engineering and technology. They attended professional development sessions, participated in the SWE Career Fair, and networked with other student sections and professional members. 

While there, Romana Carden, a major in engineering management, participated in the SWE Future Leaders (SWEFL) program. Carden also attended the day-long SWE Collegiate Leadership Institute (CLI) with Mackenzie Brunet, a fellow engineering management major. Both programs are led by female engineers working in industry and academia, to help college students gain leadership skills. Zoe Wahr, a civil engineering major, received a scholarship in recognition of her academic, university, and SWE accomplishments. And Hein was recognized at WE19 for her 20-plus years of service with the SWE Engaged Advocate Award, which honors individuals who have contributed to the advancement or acceptance of women in engineering.

“We have a strong and sustainable SWE chapter at Michigan Tech, and Dr. Hein’s work as the college of engineering chapter advisor has played a key role in this,” says Janet Callahan, Dean of the College of Engineering. “I am truly grateful to every person who has contributed to SWE—past, present and future.”

“In the coming year, SWE students plant to expand their outreach,” she adds. “We’d love to have more Michigan Tech students join the section and explore what SWE and the SWE members have to offer.” 

Next month, in early November, the section will participate in the WE20 Conference in New Orleans, virtually.

Interested in learning more about the SWE section at Michigan Tech? Join their email list at swe-l@mtu.edu, or follow the section on Facebook and Instagram, @michigantechswe.