Category: Research

Samson A. Jenekhe, Michigan Tech Alumnus, Elected to the National Academy of Engineering

Professor Sam Jenekhe’s pioneering polymer research paved the way for commercial OLEDs

Michigan Tech alumnus Samson A Jenekhe ’77 has been elected to the National Academy of Engineering, among the highest professional distinctions accorded to an engineer. Dr. Jenekhe is honored for discovery and understanding of conjugated materials for organic light-emitting diodes (OLEDs) widely used in the commercial sector.

A professor of chemistry and the Boeing-Martin Professor of Chemical Engineering at the University of Washington, Jenekhe studies the fundamental physical and chemical properties of semiconductor materials, as well as their practical applications. Research topics have included organic and flexible electronics, the use of organic light-emitting diodes for lighting and displays, energy storage and conversion systems, semiconducting polymers and polymer-based photovoltaic systems.

Jenekhe is a Chemical Engineer who earned his BS at Michigan Tech and his MS, MA, and PhD at the University of Minnesota. Jenekhe worked as a research scientist for Honeywell, Inc. and later joined the faculty at the University of Rochester, before joining the faculty at the University of Washington in 2000.

He is a fellow of the American Association for the Advancement of Science, the Royal Society of Chemistry and the American Physical Society, which in 2021 also awarded him the Polymer Physics Prize. He also received the Charles M.A. Stine Award for Excellence in Materials Science from the American Institute for Chemical Engineers in 2014.

Read More

Samson A. Jenekhe’s Pioneering Polymer Work Paved the Way for Commercial OLEDs
US Department of Energy: OLED Basics

Watch

Distinguished Chemical Engineering Seminar given by Professor Samson Jenekhe, University of Washington. Held on 2 March 2016 at the Department of Chemical Engineering, Imperial College London.

Play Plastic electronics and photovoltaics video
Preview image for Plastic electronics and photovoltaics video

Plastic electronics and photovoltaics

Zhanping You: Where the Rubber Meets the Road

Professor Zhanping You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. 
Professor Zhanping You

Zhanping You generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan back on Monday, February 21. You can view the YouTube recording of his session to learn something new in just 30 minutes (or so). Here’s the link to watch. Register for future sessions of Husky Bites at mtu.edu/huskybites. Grab some supper, or just flop down on your couch. Everyone’s welcome! It’s BYOC (Bring Your Own Curiosity).

Dr. Zhanping You, a Distinguished Professor of Transportation Engineering in the Department of Civil, Environmental and Geospatial Engineering, uses old tires to make new roads. One of Prof. You’s doctoral students, Dongzhao “Kobe” Jin, joined in to talk about the process.

Kobe Jin

Dr. You works with recycled materials to improve asphalt pavement performance. Crumb rubber, made from scrap tires, is one such material. ”Crumb rubber in asphalt reduces rutting and cracks and extends life, and it lowers noise levels,” he says. 

Scrap tires are plentiful, though not in a good way. “Hundreds of millions of scrap tires are generated in the US every year,” he notes. “Those giant piles of waste tires pose concerns of potential contamination of local groundwater and fire risk.”

You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. “We do it through various experimental and numerical modeling techniques,” You explains. “Our research team has also expanded the work to include field pilot projects, too. Over the past 6-7 years or so, we’ve constructed quite a few roads in Michigan that use recycled tire rubber.” The team works with the Michigan Department of Environment, Great Lakes, and Energy (EGLE) and the EGLE Scrap Tire division, plus road commissions in Dickinson County, Kent County, St. Clair County, Clare County, and Bay County.

“Teaching provides me with broad dimensions to sharpen my research vision, while research helps me develop in-depth understanding so that I can teach better,” Dr. You says.

Another material You and his team employ: pavement rubble. “More than 94% of the roads in the United States are paved with asphalt mix—about 360 million tons each year. In turn, that generates over 60 million tons of old asphalt pavement waste and rubble,” he notes. Recycling these waste materials not only greatly reduces the consumption of neat asphalt mix, it also lowers related environmental pollution, he adds. 

Blending recycled asphalt pavement (RAP) with fresh asphalt mix has presented several challenges for You and his team. “One noticeable issue of using RAP in asphalt pavement is the relatively weaker bond between the RAP and neat asphalt, which may cause moisture susceptibility,” he says. “We have determined that modifying the asphalt mix procedure and selecting the correct neat asphalt can effectively address this concern.” 

Before the recycled asphalt-tire-gravel mix ever makes it outside, You and his research team do plenty of work indoors, using computer modeling and lab tests to make sure they put viable material out in the elements. 

“When crumb rubber is blended into an asphalt binder, the stiffness of the asphalt binder is increased,” You explains. “ A higher mixing temperature is needed to preserve the flowability of asphalt binder. Conventional hot-mix asphalt uses a lot of energy and releases a lot of fumes. To solve this problem we developed a warm mix technology, a foaming process at lower temperatures, that requires less energy and reduces greenhouse gas emissions.” 

You and his group developed and tested several foaming technologies for warm mix asphalt, integrating state-of-the-art rheological and accelerated aging tests, thermodynamics, poromechanics, chemical changes and multi-scale modeling to identify the physical and mechanical properties of foamed asphalt materials. 

You has other solutions in the works, too, including man-made asphalt derived from biomass. “We tried using bio oil (derived from biomass) in asphalt and found it also improved pavement performance,” he says. 

Not even the pandemic can stop the construction of recycled roads in Michigan!
A Michigan Tech research team of students led by Zhanping You tests a new, cooler way to make rubberized asphalt in Michigan’s Upper Peninsula.

“Asphalt made from bio oil can potentially reduce the consumption of petroleum asphalt and lower the production temperature while road rutting resistance can be improved. We actively work with local, state, and national recycling efforts to develop better road materials, using plastics, waste glass, and several other recyclables, too,” he notes. “We hope our efforts will contribute to a circular and low-carbon economy.”

Prof. You, how did you first get into engineering? What sparked your interest?

I got into civil engineering accidentally, but started to love it. When I was little, I had debates with my friends on the possible damage on roads–was it the load or the pressure from the tires?

Hometown, family?

I view Houghton as my hometown now since I have been here almost 17 years, even though I was born and raised in Northwest China.

A lot of testing goes on in Dr. You’s lab at Michigan Tech.

What do you like to do in your spare time?

I love to read books—non-engineering, engineering, history, and literature. I’m also a recently appointed coadvisor to the Michigan Tech student chapter of Society of Asian Scientists and Engineers (SASE). After years of service in various professional groups at Michigan Tech, I believe an organization of Asian students involved in science and engineering is really needed.

Kobe, how did you first get into engineering? What sparked your interest?

Says Kobe: “Dr. You’s humor, lifestyle, rigorous academic attitude, and profound understanding of sustainable pavement all impact me a lot.”

The first time I got interested in engineering was when they were paving the concrete road in my hometown. I became interested in how and why a mix of some aggregate, sand, and water could create such a hard road.

Hometown, family?

My hometown is a small county in Henan Province, China. I have two sisters and I love my family.

Any hobbies? Pets? 

I like cats and basketball (I go by Kobe in honor of my favorite basketball player). I read science fiction books during my spare time.

Read More

Q&A with Research Award Winner Zhanping You
When Rubber Becomes the Road

Kobe enjoys the Houghton Waterfront Park near campus (even in the middle of winter!)

TECH SCEnE: Adventure is Calling Your Name

TECH SCEnE REU 2021 alum Elizabeth Chery studies biomedical engineering at Florida International University, in Miami, Florida.

Want to combine engineering research with direct community involvement and impact? Biomedical engineering student Elizabeth Chery did, and she took the plunge just last summer at a National Science Foundation Undergraduate Research Experience (REU) at Michigan Technological University.

The 8-week, all-expensed paid program is called TECH SCEnE (short for Technology, Science and Community Engagement in Engineering). Chery stayed on campus, went on outdoor trips throughout the Keweenaw Peninsula, guided by the Keweenaw Bay Indian Community, and conducted hands-on research on campus with her team right alongside a faculty mentor.

“I found it very refreshing to be surrounded by nature in Michigan’s Upper Peninsula, and to enjoy endless outdoor activities like fishing, biking, hiking, and going to state parks.”

It was nearing the end of spring 2021. Summer was just around the corner. Chery found herself eager to start applying some of the knowledge she had gained in her college courses out in the real world.

“I wanted to see how what I was learning could connect to my future—or who I could help. I also wanted to get more exposure to research, to find out what it might be like in graduate school,” she explains.

“I have a passion for service, too, so when I discovered TECHSCEnE—an REU that emphasize bi-weekly organic gardening and indigenous culture visits—I was highly motivated to apply. This program was everything I wished for!

“TECH SCEnE is great for any student deciding whether to go into research or industry. There will be a balance of both to help guide you to your decision.”

Elizabeth Chery, TECH SCEnE REU 2021


Elizabeth, what did you like most about TECHSCEnE?

“Being in Houghton I soon discovered my love for the outdoors, and learning about indigenous cultures.”

The beautiful remote location of the program is what I enjoyed the most! I went to school in the big city. People fly to Miami to visit all the trendy hotspots I grew up with as a child. I found it very refreshing to be surrounded by nature, and to enjoy endless outdoor activities like fishing, biking, hiking, and going to state parks.

I liked being around many different kinds of people—and learning how to work together. Although we’re all in the same age group, we came from different parts of the United States, each with our own different social norms and upbringing. Despite TECHSCEnE’s overall goal—to consider research as a career—the faculty did a phenomenal job of educating us about team building. I met great people and we made tons of special memories together! We went on numerous field trips, some centered on career information, and others focused on social skills. Both are essential components for working in the real world. 

Elizabeth Chery presents her research results during the final days of her TECH SCEnE NSF REU at Michigan Tech

What was the most challenging aspect?

“This hiking trip in North Carolina for my birthday (in September) was inspired by the scenic beauty in I enjoyed during TECH SCEnE.”

Staying organized was a definite challenge with all the data we collected during the experiments. It was absolutely imperative that I document and create a daily report, so that I could make a strong bi-weekly presentation to my peers in the TECHSCEnE program. They were not as well-versed in my topic, so I needed to take an abstract idea and relate it to something more common without being too repetitive or complex. Their bi-weekly feedback helped me find the sweet spot of not over-explaining, yet still being clear and understandable.

What next? What are your future plans?

After completing TECHSCEnE, I joined a research lab at my own university to continue my interest in research. I recently added a minor in chemistry to my major, too. My goal for the upcoming summer is to intern for a biomedical technology company or pharmaceutical company. And my future career goal remains the same: to pursue a graduate degree in biomedical engineering with a concentration in tissue engineering. My ultimate goal is to become a physician-scientist.

Are you an adventurous college student? Want to learn how to use science and technology to benefit both community and the environment? Apply to TECH SCEnE by March 15. Tribal college, community college or university students, women and students from underrepresented backgrounds are all encouraged to apply. Learn more and apply for free at techscene.mtu.edu.

Hoda Hatoum: How Can You Mend a Broken Heart? Flow Dynamics in Arrhythmias

Dr. Hatoum and PhD student Brennan Vogl test heart valves for overall performance and energetics, turbulence generated, sinus hemodynamics (aortic and pulmonic), as well as ventricular, atrial, pulmonic, and aortic flows.

Hoda Hatoum shares her knowledge on Husky Bites, a free, interactive webinar this Monday, 2/14 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Dr. Hoda Hatoum

What are you doing for supper this Monday night 2/14 at 6 ET? Grab a bite with Dean Janet Callahan and Hoda Hatoum, assistant professor of Biomedical Engineering at Michigan Tech. She’ll talk about her cardiovascular research along with Brennan Vogl, one of the first PhD students to join her Biofluids Lab in the fall of 2020.

Atrial fibrillation (aka AF or AFib), when the heart beats in an irregular way, affects up to 6 million individuals in the US, a number expected to double by 2030. More than 454,000 hospitalizations with AFib as the primary diagnosis happen each year. Current AF treatment guidelines recommend antiarrhythmic drugs as initial therapy, but their efficacy is limited and comes with the risk of serious adverse effects. Another option, catheter ablation, electrically isolates the pulmonary veins—the most frequent site of AFib triggers—with more success and an excellent safety profile.

Brennan Vogl

“One of my goals in the lab is to evaluate and provide answers to clinicians so they know what therapy suits their patients best,” says Hatoum. During Husky Bites, by way of example, she’ll show us just how AFib ablation impacts the heart’s left atrial flow.

The left atrium is one of the four chambers of the heart, located in the heart’s upper half. It receives oxygenated blood from the lungs, and pumps it down to the left ventricle through the mitral valve. The left ventricle then pumps the oxygen-rich blood to the rest of the body through the aortic valve.

An actual human heart is about the size of your fist, shaped like an upside down pear. Every cell in your body gets blood from your heart (except for your corneas).

Hatoum’s research seeks to better understand flow dynamics of the heart during arrhythmia, as well as the complexity of structural heart biomechanics, prosthetic heart valve engineering, and the structure-function relationships of the heart in both health and disease.  

Hatoum earned her BS in Mechanical Engineering from the American University of Beirut and her PhD in Mechanical Engineering from the Ohio State University (OSU). She was awarded an American Heart Association postdoctoral fellowship, and completed her postdoctoral training at the Ohio State University and at Georgia Institute of Technology before joining the faculty at Michigan Tech.

“One of my goals is to evaluate and provide answers to clinicians so they know what therapy suits their patients best.”

Hoda Hatoum

Why hearts? “It all started with my doctoral program,” Hatoum recalls. “I had the opportunity to work closely with clinicians, to attend their structural heart meetings, and to plan with them the appropriate therapy to be administered for patients. Every patient is very different, which makes the problem exciting and challenging at the same time.”

Now, working in her own Biofluids Lab at Michigan Tech, Hatoum integrates principles of fluid mechanics, clinical expertise with collaborators nationwide (including Mayo Clinic, Ohio State, Vanderbilt, Piedmont Hospital and St. Paul’s Hospital Vancouver), and design and manufacturing–all to find solutions for cardiovascular flow problems. 

Play Biomedical Engineering Biofluids Lab Aortic Valve Models video
Preview image for Biomedical Engineering Biofluids Lab Aortic Valve Models video

Biomedical Engineering Biofluids Lab Aortic Valve Models

These aortic valves open and close based via the contraction of a pump, controlled by a LabView program. See more during Husky Bites!

Hatoum designed and built a pulse duplicator system—a heart simulator—that emulates the left heart side of a cardiovascular system. She also uses a particle image velocimetry system that allows her to characterize the flow field in vessels and organs. Hatoum and her team of students use these devices to develop patient-specific cardiovascular models, conducting in vitro tests to assess the performance and flow characteristics of different heart valves. “We use idealized heart chambers or patient-specific ones,” she notes. “We test multiple commercially available prosthetic heart valves—and our in-house made valves, too.”

From the Biofluids Lab website: a wide array of current commercial bioprosthetic transcatheter mitral valves.

Hatoum and her team design their own heart valve devices. “With the rise of minimally invasive surgeries, the clinical field is moving towards transcatheter approaches to replace heart valves, rather than open heart surgery,” she explains. 

“Currently, transcatheter heart valves are made of biological materials, including pig or cow valves, that are prone to degeneration. This can lead to compromised valve performance, and ultimately necessitate another valve replacement.” To solve this problem, Hatoum collaborates with material science experts from different universities in the US and around the world to utilize novel biomaterials that are biocompatible, durable and suitable for cardiovascular applications. 

Which area of research pulls Dr. Hatoum’s heartstrings the most? “Transcatheter aortic heart valves,” she says. (Look closely at this photo to see the closed leaflets of an aortic valve.)

“With the challenges that come with TAVs, and with the low-risk population targeted, I believe this is an urgent field to look into, so we can minimize as much as possible any adverse outcomes, improve valve designs and promote longevity of the device.”

Congenital heart defects in children are another strong focus for Hatoum and her team. “We devise alternatives for highly-invasive surgeries for conditions such as pulmonary atresia, Kawasaki disease, and more.” Hatoum collaborates with multiple institutions to acquire patient data, then, using experimental and computational fluid dynamics, she examines the different scenarios of various surgical design approaches. “One very important goal is to develop predictive models that will help clinicians anticipate adverse outcomes,” she says.

“In some centers in the US and the world, the heart team won’t operate without engineers modeling for them—to visualize the problem, design a solution better, improve therapeutic outcomes, and avoid as much as possible any adverse outcomes.”

Hoda Hatoum
Dr. Hoda Hatoum grew up in Lebanon. She’s a big fan of road trips.

Brennan Vogl was the first student to begin working with Hatoum in the lab when she arrived at Michigan Tech in 2020. “It is a great pleasure to work with Brennan,” says Hatoum. “He is very responsible and focused. He handles multiple projects, both experimental and computational, and excels in all aspects of them. I am proud of the tremendous improvement he keeps showing, and his constant motivation to do even better.”

Dr. Hatoum, how did you first get into engineering? What sparked your interest?

As a high-school student, I got the chance to go on a school trip to several universities and I was fascinated by the projects that mechanical engineering students did. That was what determined my major and what sparked my interest.

Hometown, family?

I was raised in Kab Elias, Bekaa, Lebanon. It’s about 45 kilometers (28 miles) from the Lebanese capital, Beirut. The majority of my family still lives there.

‘My niece took this image from the balcony of our house in Lebanon, located in Kab Elias. It shows the broad landscape and the mountains, and the Lebanese coffee cup that’s basically iconic.”

What do you like to do in your spare time?

I like to watch TV, read stories (thrillers) and go on road trips.

The sun temple in the Haidara ruins near Kab Elias, believed to date back to the Roman era.
A recent snow in Kab Elias (photo taken within the last week).

How can a student request to join your Biofluids lab?

The student experience is an amazing one, and one that is rewarding. When a student first joins the lab, they do not have any idea about the problem. As they get exposed to it, they add their own perspective. I currently work with two PhD students and two undergraduates. Usually, an email with interest in the research that I do is sufficient. Our lab employs both mechanical engineering students and biomedical engineering students because of our focus on mechanics. 

Brennan, how did you first get into engineering? What sparked your interest?

I first got into engineering when I participated in Michigan Tech’s Summer Youth Program (SYP). At SYP I got to explore all of the different engineering fields and participate in various projects for each field. Having this hands-on experience really sparked my interest in engineering.

Hometown, family?

I grew up in Saginaw, Michigan. My family now lives in Florida, so I get to escape the UP cold and visit them in the warm Florida weather.

Brennan loves to ski in Houghton’s plentiful powder, but he’s an even bigger fan of warm, sunny weather.
Poppy is on the left and Milo is on the right.

Pets? Hobbies?

I enjoy skiing, and I have two Boston Terriers—Milo and Poppy. They live with my parents in Florida, I don’t think they would be able to handle the cold here in Houghton, as much as I would enjoy them living with me.

2022 Design Expo Registration Now Open

Design Expo

The Enterprise Program and College of Engineering are excited to announce the 22nd Design Expo, being held in person from 10 a.m. to 2 p.m. April 21 in the Van Pelt and Opie Library’s first floor.

Design Expo has been expanded to highlight Senior Design/Capstone projects from all areas of the Michigan Tech campus, involving teams from the College of Business, College of Forest Resources and Environmental Science and College of Engineering. 

RSVP for Design Expo Today!

The Michigan Tech community, friends and sponsors are invited to register for this year’s Design Expo.

More than a thousand students in the Enterprise and Senior/Capstone Design programs will come together to showcase their work and compete for awards. In addition, a panel of judges, made up of distinguished corporate representatives, alumni, community members, and Michigan Tech staff and faculty, will be able to critique videos of team projects, solutions and results in advance of the live event, then come to Design Expo to meet the teams and ask any questions in person.

Social Hour and Awards Ceremony

Starting at 2:30 p.m., all student teams, judges, sponsors and friends, and the Michigan Tech campus community are invited to a social hour at the Rozsa Center for the Performing Arts with light refreshments, entertainment and door prizes. Then, at 3:30 p.m., we will begin the Design Expo Awards Ceremony, where student teams will be recognized and more than $3,000 in cash will be awarded.

Both events are free and open to the public. We encourage current and future students, faculty, staff, parents, alumni, families of students, and others to help us celebrate our students and their achievements. Register today to see a schedule of events and attend the 2022 Design Expo.

Become a Judge

Are you interested in judging for the 22nd annual Design Expo? We welcome all Michigan Tech faculty, graduate students, staff, alumni, industry representatives and community members interested in the great work of our students! Find out more at our Become a Judge web page.

This year, judges will have the flexibility to evaluate team videos anytime between noon April 18 and 2 p.m. April 21. Judges will be assigned three to five teams, and will evaluate each team’s video using an electronic ballot. In addition, judges are asked to attend Design Expo in person between 10 a.m. and 2 p.m. April 21 to judge their teams in person. Judges will be selected based on their availability to attend Design Expo in person.

2022 Design Expo Website

For more information on attending and judging Design Expo, visit our website. For questions, please reach out to Briana Tucker at bctucker@mtu.edu.

By The Enterprise Program and College of Engineering.

Kanwal Rekhi Receives Michigan Tech’s Highest Honor: Melvin Calvin Medal of Distinction

Kanwal Rekhi talking with students at Michigan Tech’s Design Expo

Kanwal Rekhi, a visionary who routinely works to forward entrepreneurial skills and educational opportunities at Michigan Tech and around the world, received the Melvin Calvin Medal of Distinction during mid-year Commencement in December. The medal is awarded to individuals associated with Michigan Tech who, like its Nobel prize-winning namesake, have exhibited extraordinarily distinguished professional and personal accomplishments. Rekhi, who earned his master’s in electrical engineering from Michigan Tech in 1969, is managing director of Inventus Capital Partners in California.

The native of Punjab, in what was then British India (now Pakistan), earned a master’s in electrical engineering from Michigan Tech in 1969. In the more than half a century since his time on campus, MTU has never been far from Rekhi’s thoughts–and generosity.

After leaving Michigan Tech, Rekhi worked as an engineer and manager before becoming an entrepreneur. In 1982, he co-founded Excelan, a company that made Ethernet cards to connect PCs to the fledgling Internet. Excelean became the first Indian-owned company to go public in the U.S. In the early 90s, he became a venture capitalist investing in more than 50 startups and sitting on the board of directors of more than 20 companies.

In the past few decades, Rekhi has been a tireless supporter and benefactor to Michigan Tech. He developed and funded the Rekhi Innovation Challenge, a crowdfunding competition to help promote and support student innovation. He provided major funding for the Silicon Valley Experience, an immersive tour during spring break of San Francisco area companies that includes meetings with entrepreneurs and Michigan Tech alumni, and is a sponsor of the 14 Floors Entrepreneur Alumni Mentoring Sessions.

Additionally, every student who has walked the Michigan Tech campus in the past 15 years has passed the Kanwal and Ann Rekhi Computer Science Hall, dedicated in April of 2005.

The Melvin Calvin Medal of Distinction is bestowed on individuals associated with the University who have exhibited especially distinguished professional and personal accomplishments. It is named for 1931 Michigan Tech alumnus Melvin Calvin, who won the Nobel Prize in Chemistry for unraveling the biochemical secrets of photosynthesis. The series of biochemical reactions Calvin identified is known as the Calvin Cycle.

“Kanwal and his accomplishments epitomize the values we share as an institution. His passion for Michigan Tech is unparalleled and he is most deserving of this award.”

Rick Koubek, President, Michigan Technological University

While the Melvin Calvin Medal of Distinction is Michigan Tech’s highest honor, it is far from the first recognition the University has given Rekhi. He has received the Distinguished Alumni Award, the Board of Control Silver Medal, an honorary Doctorate in Business and Engineering, and was inducted into the Electrical Engineering Academy.

Fall 2021 Research Seed Grants for Engineering PIs

Michigan Tech campus and Portage waterway in the autumn.

The Vice President for Research Office announces the Fall 2021 Research Excellence Funds (REF) awards. Congratulations to all the principal investigators!

Thanks to the individual REF reviewers and the REF review panelists, as well as the deans and department chairs, for their time spent on this important internal research award process. Awardees in the College of Engineering include:

Research Seed Grants

By Kathy Halvorsen, Associate Vice President for Research Development.

Bo Chen: What’s next, NEXTCAR?

Bo Chen shares her knowledge on Husky Bites, a free, interactive webinar this Monday, November 15 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Bo Chen is a Professor of Mechanical Engineering and Electrical Engineering at Michigan Tech. She’s been a visiting Professor at Argonne National Laboratory, and was named ASME Fellow in 2020.

What’s next, NEXTCAR? What are you doing for supper this Monday night 11/15 at 6 pm ET? Grab a bite with Dean Janet Callahan and Bo Chen, Professor of Mechanical Engineering and Electrical Engineering at Michigan Tech.

During Husky Bites, Prof. Chen and one of her former students, alum Dr. Joe Oncken, will share how engineers go about designing and creating the crucial elements of an all-electric vehicle ecosystem. Oncken earned his PhD at Michigan Tech—he’s now a postdoctoral researcher at Idaho National Lab.

Chen and her research team at Michigan Tech envision an all-electric future. They develop advanced control algorithms to build the nation’s electric vehicle charging infrastructure and highly efficient hybrid electric vehicles, integrating with advanced sensing technologies that allow for predictive control in real time. These technologies enable the kind of vehicle-to-vehicle and vehicle-to-infrastructure communication that will reduce our nation’s energy consumption. 

Drs. Chen and Oncken among the fleet, outside at the APSRC.

Throughout her career Chen has made major contributions in the field of embedded systems, developing cutting-edge applications for hybrid-electric and electric autonomous systems. 

One of Chen’s courses at Michigan Tech, Model-based Embedded Control System Design, is regularly in high demand, not only by ME students but also EE students. “This is a testament to her teaching ability and the importance of the topic,” says ME-EM department chair Bill Predebon.

Chen’s Intelligent Mechatronics and Embedded Systems Lab is located on the 5th floor of the ME-EM building. But she spends a good deal of time working on NEXTCAR research at the Advanced Power Systems Research Center (APSRC), located a few miles from campus near the Houghton Memorial Airport.

“Vehicles that are both connected and automated—two paradigm-shifting technologies—will soon become vital for the improvement of safety, mobility, and efficiency of our transportation systems.”

Bo Chen

In 2016 the Department of Energy’s Advanced Research Projects-Energy (ARPA-E) awarded $2.5M to Michigan Tech for NEXTCAR research. The project—led by ME-EM Professor Jeff Naber as PI and Co-PIs Chen, Darrell Robinette, Mahdi Shahbakhti, and Kuilin Zhang—developed and demonstrated their energy reduction technologies using a fleet of eight Gen II Chevy Volt plug-in-hybrid vehicles (aka PHEVs).

The team tested the fleet on a 24-mile test loop to showcase energy optimization, forecasting, and controls—including vehicle-to-vehicle communications.

“The rich information provided by connectivity—and the capability of on-board intelligent controls—are shifting the old way (reactive and isolated vehicle/powertrain control) to the new way (predictive, cooperative, and integrated vehicle dynamics and powertrain control),” Chen explains.

Michigan Tech’s NEXTCAR research delivers direct implementation of engineering solutions, tested within the realities of on-road conditions.

Oncken is a hands-on engineer, but not all of his graduate research at Michigan Tech was done under the hood of a hybrid-electric vehicle. In an effort to maximize fuel efficiency in the fleet’s Chevy Volts, he worked with Chen where the car’s digital and mechanical parts meet—powertrain control. He looked at future driving conditions, such as changing traffic lights, and modified the vehicle’s powertrain operation to use the minimum amount of fuel.

Working in Chen’s lab, Oncken used Simulink software to develop a model, specifically looking at predictive controller design. That means when a traffic signal turns red, a self-driving vehicle not only knows to stop, but also gets directions on the best way to slow down and minimize fuel use. 

Oncken would simulate this in the Simulink model, embed the program into the Chevy Volt, then test it using five upgraded traffic signals in Houghton that rely on dedicated short-range communication (DSRC) to talk directly to the car’s programming.

By the end of the NEXTCAR project, the Michigan Tech team had achieved a 21 percent reduction in energy consumption.

All in a day’s work for Dr. Joe Oncken
Dr. Chen with her graduate students at Pictured Rocks National Lakeshore

Now, with new funding from ARPA-E for NEXTCAR II, the team shifts to a broader application of vehicles with level 4 and 5 of autonomy. They will seek to reduce energy consumption by 30 percent this time in the hybrid Chrysler Pacifica and further apply the savings to the RAM 1500 and the Chevy Bolt—while also considering level 4 and 5 automation to gain efficiencies. 

Naber and Chen, along with Grant Ovist, Jeremy Bos, Darrell Robinette, Basha Dudekula and several more graduate students now work together on NEXTCAR II with another round of funding worth $4.5M. They’ll maintain vehicles in multiple locations, both on the Michigan Tech campus and at American Center for Mobility (ACM) for road testing. ACM is a partner in the project, along with Stellantis and GM.

Prof. Chen, how did you first get into engineering? What sparked your interest?

I was attracted by the power of automation and controls. It is currently affecting every aspect of our lives. I want to make contributions specifically to advance the automation technologies.

In her spare time, Dr. Chen likes to work out and travel. Here she’s in Horseshoe Bend, Arizona

Hometown, family?

I was raised in Shaoxing, Zhejiang province in China. I lived in Davis, California for 8 years while earning my PhD at the University of California-Davis. My daughter loves snowboarding and lives in New Jersey.

Dr. Oncken, where did you grow up?

I grew up with my parents and two sisters in Grand Forks, North Dakota. I earned my BS in Mechanical Engineering at the University of North Dakota in 2016. I came to Michigan Tech to earn my PhD soon after, and graduated in 2020.

How did you first get into engineering? What sparked your interest?

There wasn’t any one moment that made me decide to get into engineering. It was more of a process throughout my childhood. Growing up, I was always interested in how things work. My dad is very mechanically inclined so he was alway fixing things around the house and woodworking, so that launched my interest as a young kid. At that time he worked for John Deere, so I got to spend time sitting in tractors and combines, something that will spark any 5 year old’s interest in mechanical things. 

In high school, I also worked for a John Deere dealer. Another job I had involved the technical side (lighting, sound, and set building) of theater and concert productions. While these may seem like two different worlds, they both gave me a behind-the-scenes look at how machinery and large technical systems operate. Together they made me want to pursue a career where I’d be the one designing how things work. 

Finally, living in a university town, there were lots of opportunities to tour the University of North Dakota’s engineering school and see what students got to work on, opportunities that cemented my desire to go into engineering myself.

Joe, out on the Tech Trails.

Any hobbies? Pets?

My main hobby is anything outdoors. I spend my free time mountain biking in the summer, skiing in the winter—and hiking when I’m not doing one of the previous two things.

I also really enjoy cooking and wood working. I don’t currently have any pets, but I did grow up with dogs. I will have a dog of my own sooner rather than later!

Read More

Power Grid, Powertrain and the Models that Connect ThemMichigan Tech Automotive Energy Efficiency Research Receives Federal Award of $2.8 Million from US Department of Energy

Sunit Girdhar, Steven Whitaker Receive 2021 INCE Awards

Two Michigan Tech graduate students were honored by The Institute of Noise Control Engineering (INCE) at their annual honors and awards ceremony recognizing outstanding service, research and activity in noise control.

Sunit Girdhar,
Sunit Girdhar

Sunit Girdhar, doctoral student in mechanical engineering-engineering mechanics, won both the inaugural INCE Student Scholarship and the Martin Hirschorn IAC Prize – Student Project.

Steven Whitaker, an electrical and computer engineering graduate student, received the 2021 Leo Beranek Student Medal for Excellence in Noise Control for Deep recurrent network for tracking an anthropogenic acoustics source in shallow water using a single sensor.

Dana Lodico, INCE-USA vice president, Honors and Awards Committee, applauded the winners. “This year’s winners should be incredibly proud of their achievements in noise control,” said Lodico. “Entries for INCE-USA Honors and Awards were very competitive, and we look forward to seeing how each winner continues to advance the noise control industry in their careers.” 

Read more about the awards on the INCE website.

Greg Odegard: Manned Mars Missions—New Materials

As NASA shifts its focus from low-earth orbit to deep space exploration, the agency is going to need building materials for vehicles, habitats, power systems and other equipment that are lighter and stronger than those available today. Pictured: NASA’s Curiosity Mars image at Mont Mercou, a rock outcrop that stands 20 feet tall. Credit: NASA/JPL-Caltech/MSSS

Greg Odegard shares his knowledge on Husky Bites, a free, interactive webinar this Monday, November 8 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 11/8 at 6 pm ET? Grab a bite with Dean Janet Callahan and Greg Odegard, Professor of Mechanical Engineering-Engineering Mechanics at Michigan Tech. 

Dr. Greg Odegard is the John O. Hallquist Endowed Chair in Computational Mechanics at Michigan Tech.

It’s a bit of a conundrum. When sending humans into space for long periods of time, a significant amount of mass (food, water, supplies) needs to be put on the rockets that leave Earth. More mass in the rocket requires more fuel, which adds more mass and requires more fuel. Current state-of-the-art structural aerospace materials only add more mass, which requires—you guessed it—more fuel. 

During Husky Bites, Professor Greg Odegard will share how his team of researchers at Michigan Tech go about developing new ultra-light weight structural materials to significantly cut fuel costs for sending humans to Mars—and beyond.

Dr. Bill Predebon is the J.S. Endowed Department Chair in Mechanical Engineering–Engineering Mechanics at Michigan Tech

Joining in will be ME-EM department chair Bill Predebon. Dr. Predebon has been at Michigan Tech since 1975. That’s 46 years, and 24 years as department chair. He plans to retire this summer.

“Bill Predebon has been my mentor since I came to Michigan Tech in 2004. I have enjoyed working for him, and I am not ready for him to retire,” says Odegard. “I was extremely impressed with him during my job interview in 2003, which is one of the biggest reasons I came to Michigan Tech.”

In addition to teaching classes and mentoring students at Michigan Tech, Odegard leads the charge in developing a new lighter, stronger, tougher polymer composite for human deep space exploration, through the Ultra-Strong Composites by Computational Design (US-COMP) Institute.

The NASA-funded research project brings together 13 academia and industry partners with a range of expertise in molecular modeling,manufacturing, material synthesis, and testing, now in the final year of the five-year project. 

Pictured: Pre-machined fragments of a polybenzoxazine high-performance polymer in Dr. Odegard’s lab at Michigan Tech. This polymer can be used with carbon-nanotubes to form ultra-strong composites for deep-space applications.

US-COMP’s goal is to develop and deploy a carbon nanotube-based, ultra-high strength lightweight aerospace structural material within five years. And US-COMP research promises to have societal impacts on Earth as well as in space, notes Odegard. Advanced materials created by the institute could support an array of applications and benefit the nation’s manufacturing sector.

The material of choice, says Odegard: carbon. He specifically studies ultrastrong carbon-nanotube-based composites. But not all carbon is equal, notes Odegard. Soft sheets of graphite differ from the rigid strength of diamond, and the flexibility and electrical properties of graphene.

“In its many forms, carbon can perform in many ways. The tricky part with composites is figuring out how different materials interact,” he explains. 

Odegard and his research team use computational simulation—modeling—to predict what materials to combine, how much and whether they’ll stand up to the depths of space. “When we began developing these ultra-strong composites, we weren’t sure of the best starting fibers and polymers, but over time we started to realize certain nanotubes and resins consistently outperformed others,” says Odegard. “Through this period of development, we realized what our critical path to maximize performance would be, and decided to focus only on that, rather than explore the full range of possibilities.”

“I have the most fun working with my students and the broader US-COMP team. Our whole team is excited about the research and our progress, and this makes for some of the best research meetings I have experienced in my career.”

Dr. Greg Odegard

The challenge when working with carbon nanotubes is their structure, says Odegard. “Under the most powerful optical microscope you see a certain structure, but when you look under an SEM microscope you see a completely different structure,” he explains. “In order to understand how to build the best composite panel, we have to understand everything at each length scale.” 

The US COMP Institute has created dedicated experiments and computational models for the chosen carbon nanotube structure, something that must be done for each length scale, from the macro to the atomic.

As their project comes to a close, they’ve zeroed in how just how polymer can be used with carbon-nanotubes to form ultra-strong composites.


NASA’s Mars Curiosity rover took this mosaic image, looking uphill at Mount Sharp.

US-COMP PARTNERS

  • Florida A&M University
  • Florida State University
  • Georgia Institute of Technology
  • Massachusetts Institute of Technology
  • Pennsylvania State University
  • University of Colorado
  • University of Minnesota
  • University of Utah
  • Virginia Commonwealth University
  • Nanocomp Technologies
  • Solvay
  • US Air Force Research Lab
Professor Odegard up on Mt. Meeker, in Colorado where he grew up and earned his degrees.

“As a group we have been able to push the envelope way beyond where we started in 2017—expanding the performance in a very short time period,” says Odegard. “This was made possible through remarkable collaboration across the institute.”

Before Predebon convinced him to join the faculty at Michigan Tech, Odegard worked as a researcher at NASA Langley Research Center in Hampton, Virginia. Odegard’s research has been funded by NASA, the Air Force Office of Scientific Research, the National Science Foundation, the National Institutes of Health, Mayo Clinic, Southwestern Energy, General Motors, REL, and Titan Tires. As a PI and co-PI, he has been involved in externally funded research projects totaling over $21 million. Odegard was a Fulbright Research Scholar at the Norwegian University of Science and Technology. In 2019 he was elected a Fellow of ASME, in recognition of his significant impact and outstanding contributions in the field of composite materials research.

The Odegard family enjoying their time together

Prof. Odegard, how did you first get into engineering? What sparked your interest?

Growing up, I always knew that I would be an engineer. I was always interested in airplanes and spacecraft. 

Hometown, family?

I grew up and went to college in the Denver area. I was already accustomed to snow when I moved to Michigan. 

Any hobbies? What do you do in your spare time?

In the summer, I enjoy running, mountain biking, hiking, basketball, and soccer. In the winter, I like cross-country skiing and downhill skiing. I also enjoy cooking, traveling, and anything fun with my family.

Dr. Predebon, how did you first get into engineering? What sparked your interest?

During my childhood my dad introduced me to model trains. We had a large 8ft x 4ft board with Lionel trains. I learned how they work and how to set it up. That sparked my interest in engineering.

Bill and Peter at Winter Carnival

Hometown, family?

I was born in Trenton, New Jersey. I had one brother, Peter, who is deceased now.  

What do you like to do in your spare time?

For most of my career at Michigan Tech my hobby has been my work. My work has absorbed my life, by choice. I have a real passion for our program. However, I do enjoy exercising, repairing things, and organic gardening. My wife, Maryanne, is very good; I just help. We have a peach tree, we have grown watermelon, we’ve grown cantaloupes, we’ve grown potatoes, her passion is pumpkins so we grow these large pumpkins—150 pounds.

“The way I look at my role is to nurture the growth of my faculty and staff, right along with our students. I want to help them all reach their potential.”

Dr. Bill Predebon

Read More:

Q&A with MTU Research Award Winner Gregory Odegard
NASA Taps Tech Professor to Lead $15 Million Space Technology Research Institute