Jeremy Goldman: Stents—How to Stunt Stenosis

Microscopic image of an aorta containing a degradable zinc implant within the arterial wall at 4 months. Blue indicates cell nuclei, smooth muscle cells are red, and green is the media (middle) layer of the artery. Photo credit: Roger Guillory, Michigan Technological University

Jeremy Goldman and Roger Guillory generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

What are you doing for supper this Monday night 2/1 at 6 ET? Grab a bite with Dean Janet Callahan and Biomedical Engineering Professor Jeremy Goldman. He’ll explain why traditional cardiac stents need an upgrade, and how zinc alloys may be part of the solution.

Also joining in will be Biomedical Engineering Assistant Professor Roger Guillory, one of Goldman’s former students at Michigan Tech. He grew up in Houston, Texas, then earned his BS, MS, and PhD in Biomedical Engineering at Michigan Tech, working in Goldman’s research lab all the while. He returned to Tech last year as a faculty member.

Every year, more than 900,000 Americans will have a heart attack. To reduce the chance of having a heart attack in the first place, or preventing another one from happening, a permanent stent, a small expandable metal tube, is implanted in a coronary artery.

Dr, Jeremy Goldman

These tiny mesh tubes prop open blood vessels that are healing from procedures like balloon angioplasty. After about six months, most damaged arteries are healed and stay open on their own. The stent, however, is there for a lifetime.

But stents can be harmful later on. The tiny metal segments that make up the stent can break and end up poking the arterial wall in the heart. They may cause blood clots or inflammation. The stent itself begins to create more problems than it solves.

Goldman, his team of students and his research partners at Michigan Tech are the minds behind a smarter stent that gradually—and harmlessly—dissolves after the blood vessel is healed. “You could have all the early beneficial characteristics, but none of the harmful later ones, and you’d be left with a natural artery,” says Goldman.

Dr. Roger Guillory II

“Ours is a zinc-based bioabsorbable stent,” he explains. “Zinc works better and with fewer side effects than iron or magnesium, the materials most studied for stents,” Goldman explains.

“Pure zinc isn’t strong enough to make a stent that will hold an artery open as it heals, so we did additional experiments. Those studies suggest alloying zinc with other materials could propel the research over that hurdle.”

The team performed biocompatibility studies of zinc’s breakdown products and is now testing stents made from the most promising zinc alloys to understand how those stents might work in a human body. 

“So far, our bioabsorbable zinc alloy metal harmlessly erodes within the desired timeframe, 1-2 years. It really has demonstrated superiority to current materials,” says Goldman.

Biodegradable zinc heart stent, engineered to dissolve in place after a specified amount of time. Photo credit: Jaroslaw Drelich, Michigan Technological University

As a first year student at Michigan Tech, Guillory first read about Goldman’s research on the Michigan Tech website, and then went to see him after hearing him speak at a first-year seminar class. Goldman soon offered Guillory a job in his lab.

Guillory started out by performing histological analysis—cutting extremely thin cross-sections of an extracted artery (around 10 micrometers) frozen in liquid nitrogen in a machine called a cryostat. After obtaining these tiny cross sections, he stained them, looked at them with a light microscope, and interpreted the data.

Roger Guillory worked as an undergraduate researcher in the Goldman Lab starting in his first year at Michigan Tech. This photo was taken in 2014.

“Analyzing specimens with histochemical techniques is sort of like taking a picture of a huge party with lots of people,” says Guillory. “From that one picture we can figure out who is there (cell morphology), how they got there (tissue derived or cell migration), and why they came to the party (immune response, or injury response). We can also see from those pictures who is sick, (necrosis), as well as who has been there for a while (development of fibrous barrier).”

Guillory grew up in Houston, Texas. “I knew I wanted to pursue an advanced degree many years ago,” he says. “I was attracted to the idea of probing the unknown. I have always wanted to learn more about what has not been explored, and pursuing an advanced degree allowed me to do just that.” 

In 2017, as a biomedical engineering doctoral student at Michigan Tech, Guillory won a prestigious National Science Foundation Graduate Research Fellowship. He used the funding to continue his research on degradable metals (zinc-based) for cardiovascular-stent applications. His coadvisors were Goldman and Jaroslaw Drelich, a distinguished professor in Michigan Tech’s Department of Materials Science and Engineering.

After postdoctoral studies at Northwestern University in Evanston, Illinois, Guillory returned to Michigan Tech as an assistant professor last spring.

“An unbelievable amount of data and studies have been done on multiple aspects of our project, but I can say what we have achieved thus far at Michigan Tech has never previously been done,” adds Guillory.

Prof. Guillory, how did you first get interested in engineering?

Dr. Guillory hard at work in the lab. In his spare time he likes to go fishing.

“I think I’ve always been this person who loves science. At my first Michigan Tech graduation, for my undergraduate degree, my mom pulled out a photo to show me. It was a picture of me at age 8 or 9, wearing a white lab coat and holding a clipboard. I wanted to be a scientist even then. In Houston, I attended a magnet school—a high school focused on STEM. One of the teachers urged us all to apply to Michigan Tech. She’d been to campus and thought it was a great place to study engineering. Well that day we all pretty much said, “Michigan??!? No way!” But then I decided to apply. I was up for the adventure, willing to take a risk.”

Any hobbies?

“I’m into cooking, savory things. I do a lot of grilling and smoking. I also play basketball at the SDC, often with Prof. Goldman. Last but not least, I love to fish. I go trout fishing, but honestly I’ll fish for anything. I’ll be going ice fishing this weekend.”

Prof. Goldman, How did you first get into engineering? What sparked your interest?

Dr. Goldman almost became a medical doctor.

“All through high school I was set on becoming a medical doctor. In college, I took pre-med courses and volunteered at different hospitals. At that time, there were big changes happening in the healthcare industry. Some of the doctors I talked to actually encouraged me not to become a doctor. That’s when I started thinking about biomedical engineering. I liked math and technology, and it seemed like a good way to combine my interests. We didn’t have biomedical engineering at my undergraduate university, so I took as many related courses as I could in addition to my major, which was chemical engineering. Then, in graduate school for my PhD, I finally took my first class in biomedical engineering. Right away it connected deeply in me. That was when I knew: this is it. This is what I really want to do.”

Pictured above: a bunch of lifesavers—especially that one in the center!

What do you like to do in your spare time?

I like to play chess! I’ve been playing ever since I was a little kid. I played chess with my dad, and I played chess with my grandfather. When I was in second or third grade I started the school’s first chess club. And I was captain of the chess team in high school. Now, in the Covid age, I’m playing chess more than ever, including some amazing tournaments online. I also like running outside (even in the winter).

Read More

Doing Fulbright Research in a War Zone

The Healing Stent

Guest Blog: The Importance of Teamwork

Hurricane Frederic at peak intensity near landfall on Dauphin Island on September 12, 1979.
Credit: The National Oceanic and Atmospheric Administration (NOAA)

In his guest blog, Michigan Tech mechanical engineering alumnus Patrick Parker ’75 tells the story of working in a power plant during Hurricane Fredric, a Category 4 with sustained winds of 155 mph. It happened just four years after Pat graduated from Michigan Tech.

“Teamwork is the fuel that allows common people to attain uncommon results.” — Andrew Carnegie

“Every Bad situation is a blues song waiting to happen” — Amy Winehouse

“In teamwork, silence isn’t golden, it’s deadly.” — Mark Sanborn

“Talent wins games, but teamwork and intelligence win championships.” —Michael Jordan

“Alone we can do so little, together we can do so much!” — Helen Keller

Early in my career, I was a maintenance supervisor at a 7-unit power station just north of Pensacola, Florida. I had a crew of 15 people—electricians, mechanics, and welder/mechanics. We maintained equipment throughout the plant, and made repairs when any operational issues arose, to help avoid a power outage on one or more of the units.

While living on the Gulf Coast, I had heard many stories of hurricane events, most of which involved the loss of property due to the high winds, tremendous rainfall (often over 20 inches) and if you were close to the beach, the storm surge could have waves over 10 feet washing ashore. I heard stories of lost friends and family, stories that usually ended with “I told them to “move up north till this is over!’”

Michigan Tech Alumnus Patrick Parker, BSME ’85

In early September of 1979, we began watching closely a tropical storm off the southern tip of Florida moving North by NW, directly toward us. After a couple of days, its gusts were often much higher.

Our plant manager had lived through several events like this and began issuing instructions that would prepare us for the worst, while we prayed for the best. We began with a thorough clean up of the plant for anything important to be moved somewhere it would be safe. We paid special attention to any of our safety equipment, fire fighting gear, tools, rigging, and anything that could be useful in dealing with fire,collapse of structures, flooding, or any first aid. We also moved anything hazardous such as flammables, gases, or anything that could cause harm if it got out into the area around the plant. As that went forward, our Plant Manager made our staffing plans for the upcoming event.

Our operations department in the downtown office sent us instructions to put all seven of our units into service, to help ensure some redundancy in the event we start tripping units off line, due to storm damage. In order to do that we called in our operators who were skilled in the use of oil and natural gas for combustion. We finally worked it out, so all our operators were here (half were sleeping) as well as all our maintenance staff to address needs as they arose. We had also arranged for a good store of water, food, and sleeping arrangements for those workers who were staying overnight. All our employees all wanted to stay, but there were some with responsibilities that forced them to go home.

The coal yard would be another concern due to its size and proximity to a river that dumped into the Gulf. We received coal usually by barge which was less than 50 feet from the river. Our people who worked there began constructing a dike made of coal that would minimize any spillage into the river as strong winds and rain began. (Two years later they built a concrete dike about 2 feet thick by 8 feet tall around the portion of the coal pile adjacent to the river.)

As the storm approached, we began making final preparations for the high winds and rain by closing all doors and reinforcing them with steel beams/braces. The windows were covered with plywood and canvas sheets, and the smaller windows near walkways were covered with duct tape to minimize shattering and spreading glass.

Anything that was likely to get airborne during the wind and rain was moved off the site, such as contractor trailers, port-a-johns, and unnecessary equipment. The concern was to protect the transmission lines and support poles from being knocked down or shorted out. We did a thorough final walk around of all plant space, paying special attention to the area outside to check for anything else. Then the hard part began—WAITING!

We were on our feet almost nonstop, walking around, looking, checking and listening for anything that might indicate a problem. Many of us laid down somewhere and slept as we had been working almost 30 hours straight.

On September 12, 1979, in the early evening hours, Hurricane Fredric’s eye came ashore as a category 4 with sustained winds of 155 mph. It was located about half way between Pensacola Florida, and Mobile, Alabama. That landfall put us in the northeast quadrant of the storm, which typically is the worst part of the storm due to a hurricane’s counter clockwise rotation.

After 40 years I still have many images of what happened that week and the aftermath that followed for many weeks. I’ll share just a couple: I remember going to the top floor that was still inside the boiler structure with the Plant Manager (about 9 stories up) to look south toward Pensacola. I was expecting to see light coming from the city as usual, but there was none.

About every 3 to 5 minutes there was a large BOOM and a large flash of orange light coming from several miles south. I didn’t know what was happening, and it made me more than a little apprehensive. I imagined some industrial plant nearby exploding and burning. I asked the Manager what he thought it was, and he said, “Oh that’s just the pole mounted transformers blowing up. There will be a lot of overtime work for the Division Linemen to do when this is all over!” Was he ever right!

“There is a practice that still goes on today that couldn’t speak more clearly about the importance of working together. When the rain and wind subsided, hundreds of trucks from Line Departments of other power companies came from all over the southern states, converging on Pensacola and all the way to Mobile—bringing manpower, power poles, lights, transformers, and miles of conductor wire to assist with our repairs, all around the city and neighboring counties.”

Patrick Parker, BSME ’75


The division manager for the area around Pensacola came to the Plant and asked if he could “borrow” some of our people, especially electricians to assist in the walk down of all the “radials” as everyone he had was busy with the repairs. Our plant manager gave him almost all our electricians, and a couple of our engineers to help.

When electric power leaves the power plant, it passes through a Generation Step-Up transformer (GSU) which raises the voltage to transmission power levels (typically 345 KVA). The transmission line then carries the power to a ‘substation’ which lowers the voltage to typically 25 KVA and then sends the power in different directions around the city/county on the wooden power poles commonly seen. Each separate circuit is called a “radial”.

The trouble is there are many hundreds of miles of radials, which are very vulnerable to storms due to the high winds, lightning and heavy rain. Plus, the radials will not call and tell where the damage is; you must go out looking for them! Someone must walk each radial from one end to the other, and radio the Lineman Dispatcher, informing them what damage was found, and where it is located. Then they can dispatch people, parts, and equipment to make the repairs, thus hoping to save a lot of time with more people out looking. It works very well.

At the plant we had only one significant event during the storm. The plant had been built 75 feet into the ground to minimize the stress on the structure during high winds. The ‘pump room’ (75 feet down) was cooled, thankfully, by several large fans (12 feet in diameter) that pulled air in from outside. The problem was that the duct work for the fan also provided a perfect route for rainwater to flow in. We had all seven units running, when one of our staff noticed one of the large 480 Volt busses was on fire. As things happen in life, one of the cooling fans was right over the buss. We found a perfect example why water and electricity don’t mix well, as it was spitting sparks, flashes, and fire from the top of the buss.

Some of our firefighting group stretched out a fire hose and charged it up. I learned an important lesson that night. It seems it is sometimes possible to put out an electric fire with water. Instead of spraying the buss directly with the stream of water (inviting electric shock), they aimed the fire hose steeply upward, bouncing the stream of water off the flooring of the deck above the buss. A heavy downpour descended on the buss which eventually put the fire out.

The other unfortunate detail lay right above the buss in a large cable tray which routed most of the control wiring for the plant substation. As it burned and shorted out, almost all the switch yard breakers opened (for safety sake, they default open), which tripped 6 of the 7 units. We managed to keep unit 6 running at 300 megawatts. I guess the “good news” for us was even if we had all the units running, the transmission lines and distribution system was out of service due to the storm. We had no way of sending our power anywhere. It took us about a week to rewire the substation controls, the 480-volt buss, and other damage that was surprisingly minimal. I give our plant manager the credit for that. We had no injuries during the event or in the time that followed.

I learned several very important lessons during that experience:

1. Prepare, Prepare, Prepare! I believe that was the key to minimizing damage and preventing any injury.

2. Contain any Hazardous Materials—if they get loose, it doesn’t end well!

3. When someone asks for help GIVE IT. Work Together. You will need help one day, so make friends when you can.

4. NEVER, NEVER spray water on an energized electric buss! It usually doesn’t end well! I think we were very, very lucky!

5. When a hurricane approaches, the smartest thing to do is evacuate, sooner than later!

Most residents feel that as soon as the power company has all their wiring ‘hot’ again, all they must do is close their house breaker to restore power. Actually, the power company will deliberately open the wiring at the top of each power pole going to homes or businesses to prevent people from electrocuting themselves, and/or setting their house on fire due to internal damage to their home as a result of the storm. Before the power company will rewire the pole for you, they must see an inspection report of your home or business from a licensed electrician to make sure it is okay to activate power. As you might imagine, this frustrates the owners, particularly business owners. But the risks outweigh a few extra days without air conditioning.

About the Author

Pat Parker grew up in Ferndale, Michigan and went on to graduate from Michigan Technological University in 1975 with a BS in Mechanical Engineering.

His mom was from London, England. She was 14 during the London ‘blitz’ of WWII. His dad, from west Tennessee, flew for the Army Air Force in B-17s as a recon photographer. His dad met his mom while on leave in London, by pretending he was lost!

Pat first grew interested in mechanical engineering with the influence of an elderly neighbor by the name of John Pavaleka, who came to the US in the early 1920s from Czechoslovakia. John graduated from Yale with an ME degree. After graduation, he went to work for Boeing Aircraft, designing hydraulic systems in the WWII bombers—all the hydraulic systems that operated the gun turrets, landing gear, and flight controls. John was incredibly talented, and had his own hand-carved collection of airplanes of numerous designs including one with forward-swept wings.

While at Michigan Tech, Pat did well in Heat Transfer, Fluid Mechanics, and Thermodynamics courses. A classmate, Rick Sliper, encouraged Pat to go into the power generation field. So after graduation, Pat went to work for a company that built large power-generation boilers—doing construction, commissioning, and ongoing maintenance. Beginning as a first line supervisor, Pat moved up to power plant manager at two locations.

Tired of all the travel (living largely in motels) and wanting to start a family, Pat changed jobs, in order to establish a home. Still, over 42 years, Pat and his family managed to live in six states.

Some of Pat’s work-related accomplishments include a great safety and environmental record; lowering operating costs; and improving availability. He also won an award from the State of Florida for helping two elementary schools with their education goals and their Christmas celebrations.

Reluctantly retiring for health issues, Pat now spends time woodworking, writing, camping—and spoiling his two granddaughters!

Ski – Score – Spike! Student Athletes at Michigan Tech

The 2019-2020 Women’s Basketball team at Michigan Tech. Core Values: Integrity. Passion. Appreciation. Unity.

Three Michigan Tech Head Coaches and Athletic Director Suzanne Sanregret generously shared their knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of their session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

Ski – Score – Spike! What are you doing for supper tonight 1/25 at 6 ET? Grab a bite with Dean Janet Callahan and three fantastic head coaches for the Michigan Tech Huskies: Tom Monahan Smith (Nordic), Sam Hoyt (women’s basketball) and Matt Jennings (volleyball). Joining in will be Suzanne Sanregret, Michigan Tech’s Director of Athletics. 

Student athletes at Michigan Tech are high academic achievers. How? What’s it like to be both an athlete and a student at Michigan Tech? 

During Husky Bites, they’ll describe a day in the life of a Michigan Tech athlete, talk about recruiting, academic/mental wellness, and more—including how Michigan Tech athletes and (and their coaches) cope with COVID-19 challenges, too. 

Tom Monahan Smith is head coach of the Nordic ski teams and assistant coach with the cross country teams at Michigan Tech.

Tom Monahan Smith, Head Coach, Nordic Skiing, Michigan Tech

A native of Bend, Oregon, Monahan Smith came to Houghton after serving as the Head Postgraduate Program Coach of the Sun Valley Ski Education Foundation in Ketchum, Idaho. 

Monahan Smith was a gold medalist in the freestyle sprint at the U.S. Junior Nationals in 2007 as well as being a six-time Junior All-American. He was also a prolific skier in high school, claiming the Oregon High School Nordic State Champion title three times. And he comes from a skiing family with his parents, brother, sister, and cousins all racing at the collegiate level.

Monahan Smith graduated from the University of Utah in 2013 with a bachelor’s degree in Environmental and Sustainability Studies and also a bachelor’s degree in International Studies.

Read more:

Houghton-Bound: Tom Smith Hired as Michigan Tech Nordic Coach

Matt Jennings became the seventh volleyball coach in Michigan Tech history in 2012.

Matt Jennings, Head Coach, Volleyball, Michigan Tech

Jennings is also an instructor for the Department of Kinesiology and Integrated Physiology. He is currently teaching Sports Psychology and has taught various co-curricular courses for the department. He currently represents the GLIAC on the NCAA Regional Advisory Committee (RAC) for the Midwest Region and is a member of the American Volleyball Coaches Association.

Before making the move to the U.P., Jennings served as an assistant coach and recruiting coordinator at the University of Pittsburgh.

Jennings earned a bachelor’s degree in business administration and political science from Augustana College (Illinois) in 2003 and received his master of business administration (MBA) from St. Ambrose in 2006.

Read more:

Jennings Hired to Lead Volleyball Program

Suzanne Sanregret has been Michigan Tech’s athletic director since 2005.

Suzanne Sanregret, PhD, Athletic Director, Michigan Tech

Her vision within the Huskies’ athletic programs and work on conference and national committees has positioned Michigan Tech as a leader in collegiate athletics.

A veteran of working within Michigan Tech athletics, Sanregret started in 1993 in the equipment room. She moved to business manager, then to compliance coordinator, and finally to assistant athletic director for business and NCAA compliance prior to taking over as athletic director.

Sanregret attended Michigan Tech and graduated in 1993 with a bachelor’s degree in business administration. She finished her master’s degree in business administration at Tech in spring 2006 and was inducted into the Michigan Tech Presidential Council of Alumnae in 2007. In March 2017, she completed her doctorate in higher education administration from the University of Phoenix.

Read More:

Q&A with Diversity Award Winner Suzanne Sanregret

Sam Hoyt became the ninth head coach of the Michigan Tech women’s basketball program in 2018.

Sam Hoyt, Head Coach, Women’s Basketball, Michigan Tech

Hoyt returned to Michigan Tech from the University of Sioux Falls where she served as an assistant coach. 

She earned a BS in Math at Michigan Tech in 2013. As a student, Hoyt was a standout player for the Huskies, helping lead the program to the 2011 NCAA Division II National Championship game as well as garnering multiple individual awards, including All-American Honorable Mention honors

Coach Hoyt, how did you first get into coaching? What first sparked your interest?

I have been a basketball fan ever since I could walk!  My dad was a coach growing up, so I was in the gym all the time.  Our family is really competitive, so I loved that about basketball.  I’ve also always had an inclination to help others learn and grow, and coaching basketball has given me the opportunity to develop a variety of areas in the young ladies lives that I get the pleasure to work with.

Q: What did you want to do when you graduated high school?

A: I was going to be a math teacher so I could coach basketball. All the coaches I knew growing up were teachers. Coach Barnes reached out to me about a graduate assistant position at Youngstown after I graduated from Tech, and I thought that was a great opportunity because all I really wanted to do was coach basketball. All the doors have opened for me, and I’m blessed with how it’s played out.

Hometown, Hobbies, Family?

I was born and raised in Arkansaw, Wisconsin. I went to school at Michigan Tech and have now been coaching here for 3 years.  I live about 5 miles from campus with my golden retriever, Remi.  We love to go on hikes and enjoy the beauty of the UP!

#Believe

Coach Sam Hoyt, Michigan Tech

Read more:

Q&A: Home Court Advantage


Dean’s Teaching Showcase: Trever Hassell

Trever Hassell
Trever Hassell

College of Engineering Dean Janet Callahan has selected Trever Hassell, Senior Lecturer in Electrical and Computer Engineering (ECE) for week two of the Deans’ Teaching Showcase. Callahan selected Hassell for his strong engagement of students in large classes. In one student’s words, he “has done an excellent job providing world-class teaching even in the midst of the pandemic and the shift to online learning. He continues to lecture on the important course material while trying out ideas to encourage student interaction outside of the lecture setting.”

For his large section remote course, Hassell has been adapting iClicker questions used in previous semesters (pre COVID-19) for use with Reef (or iClicker Cloud). Simultaneously, he has been expanding his question bank. Implementation of the iClicker Cloud software during the Michigan Tech FLEX initiative allows Hassell to engage and stimulate student learning during lectures and receive real-time feedback regarding whether students are mastering the learning objectives of the course. Lecture iClicker questions are posted prior to the lecture for students to review in advance. During the lectures the iCloud clicker app is used for polling students, taking a screenshot question on the lecture computer screen and sending it to the students’ Reef app or mobile device webpage. Students respond to the question and their information is provided in real-time to the instructor. Class response results are then viewed, shared, and discussed. Utilizing the iClicker Cloud software has also allowed for uninterrupted course participation even as students have had to switch from remote to face-to-face modes. “Using technology to engage students keeps the Zoom sessions productive, helping students focus on understanding the material”, said Dean Callahan.

Having more than eight years of experience with “online/blended” courses, Hassell continually refines his online delivery. It is no surprise that pivoting to the FLEX mode of instruction presented him with an opportunity, rather than a burden. He found that transitioning from a touchscreen laptop using the ZoomIt app, which had a granular screen annotation resolution limitation, to a Windows Surface Pro and annotating with Microsoft OneNote vastly improved the annotation resolution, increasing student engagement in virtual activity. Interim ECE Chair Glen Archer said, “Trever has always been an experimenter and early adopter in the classroom. He’s always on the lookout for new tools and techniques that will make life in the classroom better.” In addition, Hassell has made course structural changes allowing for greater flexibility in the weekly assignments, course participation, and exams addressing student accommodations under COVID. Hassell gives students a choice, allowing participation by either synchronous iClicker questions or asynchronous communications within lecture discussions. As another student noted, “His courses are always very neatly organized, and his posting of lecture notes before our Zoom lectures each week has certainly helped. Mr. Trevor Hassel also encourages much-needed discussion both during and outside of lecture.”

Hassell has actively taken advantage of professional training and development opportunities. The Center for Teaching and Learning (CTL) has been a vital resource and asset for information and advice. Attending several of the CTL’s lunch and learn workshops played a key role in helping him integrate available tools and strategies into the classroom environment. And students appreciate it. As another student commented, “Being in Mr. Hassell’s class in Power Electronics has been a very enjoyable experience. He was always available and even though I took the class in the middle of the pandemic, I felt like we were in the same room with him all along.”

Hassell will be recognized at an end-of-term event with other showcase members, and is also a candidate for the CTL Instructional Award Series (to be determined this summer) recognizing introductory or large-class teaching, innovative or outside the classroom teaching methods, or work in curriculum and assessment.

Wayne Gersie: New VP for Diversity and Inclusion at Michigan Tech

In November 2020, Michigan Technological University named Wayne M. Gersie as its first Vice President for Diversity and Inclusion.

Dr. Gersie is a member of the University’s senior leadership team, led by Dr. Rick Koubek, president of Michigan Tech.

In his role, Dr. Gersie works to identify and address organizational and systemic issues related to diversity, equity and inclusion on Michigan Tech’s campus. This includes developing policies and best practices in collaboration with operational areas including human resources, finance, student affairs and academic affairs.

“My first few months at MTU have been exciting and productive,” shares Gersie. “I have met so many stakeholders, all who have been so welcoming and ready to share their knowledge and experiences with me. We are already forming partnerships and collaborations with students, faculty, and staff across the university that are going to help move us forward in our efforts to be an institution where a world class education is enhanced by our diversity, equity, and inclusion (DEI) and our sense of belonging.”

Gersie was previously Assistant Research Professor and Chief Diversity Officer for the Applied Research Laboratory at Penn State. He is the founder and principal of Oasis Strategic Consulting LLC. He earned his PhD in Workforce Education and Development, with emphasis on Human Resources and a Masters in Counselor Education, both from Penn State. Additionally, Gersie holds certificates from the Harvard University Institute for Management & Leadership Education, Cambridge Massachusetts, and Center for Creative Leadership in Colorado Springs, Colorado.

He has been recognized for his service with multiple awards, including The Pennsylvania State University, College of Engineering Ally recognition award. The Penn State Engineering Alumni Society Equity and Inclusion Award, The Penn State Multicultural and the Resource Center Faculty/Staff Diversity Recognition Award.

“In the words of Helen Keller, ‘Alone, we can do so little. Together we can do so much.'”

Dr. Wayne Gersie, Vice President for Diversity and Inclusion, Michigan Technological University

“Campus culture will be enhanced as we work together with respect and openness towards a community where differences are valued, equal access, opportunity, and representation are achieved, and we are able to sustain an inclusive environment., where we all feel a sense of belonging,” Gersie says.

He has served his community as a committee member, panelist, and keynote speaker for many organizations including The Pennsylvania Human Relation Commission Advisory Council for Centre County, The Penn Civilians, Chair and member of The Penn State Council of College Multicultural Leadership, National Association for Multicultural Engineering Program Advocates, American Society of Engineering Education, Black Engineer of the Year Award, Society for Hispanic Professional Engineers, The Tapia Conference and the National GEM Consortium.

Watch:

Meet MTU’s Vice President for Diversity and Inclusion


Husky Bites Returns! Join us Monday, Jan. 25 at 6 p.m. (ET).

Looking good!

Craving some brain food, but not a full meal? Join us for a Bite!

Grab some dinner with College of Engineering Dean Janet Callahan and special guests at 6 p.m. (ET) each Monday during Husky Bites, a free interactive Zoom webinar, followed by Q&A. Have some fun, learn a few things, and connect with one another as Huskies and friends. Everyone is welcome!

Husky Bites Spring 2021 series kicks off this Monday (January 25) with “Ski – Score – Spike! Student Athletes at Michigan Tech,” presented by three head coaches: Tom Monahan Smith (Nordic), Sam Hoyt (women’s basketball) and Matt Jennings (volleyball). Joining in will be Suzanne Sanregret, Michigan Tech’s Director of Athletics. They’ll be talking about the tremendous quality of our student athletes, recruiting, academic/mental wellness, share a day in the life of an athlete, and tell us how they cope with COVID-19 challenges, too.

“We created Husky Bites for anyone who likes to learn, across the universe,” says Dean Callahan. “We aim to make it very interactive, with a ‘quiz’ (in Zoom that’s a multiple choice poll), about every five minutes. Everyone is welcome, and bound to learn something new. Entire families enjoy it. We have prizes, too, for attendance.” 

The series features special guests—engineering professors, students, and even some Michigan Tech alumni, who each share a mini lecture, or “bite”.

This spring, topics include Backyard Metals, Cybersecurity, Enterprise, Fishing, Music, Lake Superior, the Mackinac Bridge, Migratory Birds, Snow, Sports, Stents, and Volcanoes.

During Husky Bites, special guests also weave in their own personal journey in engineering, science and more.

Have you joined us yet for Husky Bites? We’d love to hear from you. Join Husky Bites a little early on Zoom, starting at 5:45 pm, for some extra conversation. Write your comments, questions or feedback in Chat. Or stay after for the Q&A. Sometimes faculty get more than 50 questions, but they do their best to answer them all, either during the session, or after, via email.

“Grab some supper, or just flop down on your couch. This family friendly event is BYOC (Bring Your Own Curiosity).”

Dean Janet Callahan

Get the full scoop and schedule at mtu.edu/huskybites. Check out past sessions, there, too. You can also catch Husky Bites on the College of Engineering Facebook page.

Want a taste of Husky Bites? Check out a few comments from special guests, heard during past sessions:

I have always been interested in building things — long before I knew that was called “engineering.” I don’t recall when I became fascinated with space but it was at a very early age. I have embarrassing photos of me dressed as an astronaut for halloween and I may still even have an adult-sized astronaut costume somewhere in my closet — not saying. The desire to explore space is what drives me. Very early in my studies I realized that the biggest impediment to space exploration is propulsion. Space is just so big it’s hard to get anywhere. So I dedicated my professional life to developing new space propulsion technologies. There is other life in our solar system. That is a declarative statement. It’s time that we find it. The moons of Jupiter and Saturn hold great promise and I’m determined to see proof in my lifetime.

Prof. Brad King, Mechanical Engineering-Engineering Mechanics

I loved watching a beautiful image of planet Earth, one with a very clear sky and blue water, during my high school days. However, as I began to learn how life on Earth suffers many difficult environmental problems, including air pollution and water contamination, I also learned that environmental engineers can be leaders who help solve the Earth’s most difficult sustainability problems. That is when I decided to become an engineer. In my undergraduate curriculum, the water quality and treatment classes I took were the toughest subjects to get an A. I had to work the hardest to understand the content. So, naturally, I decided to enter this discipline as I got to know about water engineering more. And then, there’s our blue planet, the image. Water makes the Earth look blue from space. 

Prof. Daisuke Minakata, Civil and Environmental Engineering

I was born and raised in the City of Detroit. I went to Detroit Public Schools, and when I went to college I had to work to make ends meet. I got a job as a cook in the dorm, and eventually worked my way up to lead cook. I was cooking breakfast for 1,200 people each morning. One of my fellow classmates was studying engineering, too. He had a job working for a professor doing research on storm waves and beaches. I had no idea I could be hired by a professor and get paid money to work on the beach! I quit my job in the kitchen soon after, and went to work for that professor instead. I had been a competitive swimmer in high school, and the beach was where I really wanted to be. When I graduated with my degree, having grown up in Detroit, I went to work for Ford. I have to thank my first boss for assigning me to work on rear axle shafts. After about two months, I called my former professor, to see if I could come back to college. My advice for students just starting out is to spend your first year exploring all your options. Find out what you really want to do. I had no idea I could turn a mechanical engineering degree into a job working on the beach. Turns out, I could⁠—and I’m still doing it today.

Prof. Guy Meadows, Mechanical Engineering, Great Lakes Research Center

I first became interested in engineering in high school when I learned it was a way to combine math and science to solve problems. I loved math and science and thought that sounded brilliant. However, I didn’t understand at the time what that really meant. I thought “problems” meant the types of problems you solve in math class. Since then I’ve learned these problems are major issues that are faced by all of humanity, such as: ‘How do we enable widespread access to clean energy? How do we produce sufficient amounts of safe vaccines and medicine, particularly in a crisis? How do we process food products, while maintaining safety and nutritional quality?’ As a chemical engineer I am able to combine my love of biology, chemistry, physics, and math to create fresh new solutions to society’s problems. One thing I love about MTU is that the university gives students tons of hands-on opportunities to solve real problems, not just problems out of a textbook (though we still do a fair number of those!). These are the types of problems our students will be solving when they go on to their future careers.

Prof. Rebecca Ong, Chemical Engineering

My Dad ran a turn-key industrial automation and robotics business throughout most of my childhood. In fact, I got my first job at age 12 when I was sequestered at home with strep throat. I felt fine, but couldn’t go to school. My Dad put me to work writing programs for what I know now are Programmable Logic Controllers (PLCs); the ‘brains’ of most industrial automation systems. Later, I was involved with Odyssey of the Mind and Science Olympiad. I also really liked these new things called ‘personal computers’ and spent quite a bit of time programming them. By the time I was in high school I was teaching classes at the local library on computer building, repair, and this other new thing called ‘The Internet’. A career in STEM was a certainty. I ended up in engineering because I like to build things (even if only on a computer) and I like to solve problems (generally with computers and math). 

Prof. Jeremy Bos, Electrical and Computer Engineering

The factors that got me interesting engineering revolved around my hobbies. First it was through BMX bikes and the changes I noticed in riding frames made from aluminum rather than steel. Next it was rock climbing, and realizing that the hardware had to be tailor made and selected to accommodate the type of rock or the type or feature within the rock. Here’s a few examples: Brass is the optimal choice for crack systems with small quartz crystals. Steel is the better choice for smoothly tapered constrictions. Steel pins need sufficient ductility to take on the physical shape of a seam or crack. Aluminum cam lobes need to be sufficiently soft to “bite” the rock, but robust enough to survive repeated impact loads. Then of course there is the rope—what an interesting marvel—the rope has to be capable of dissipating the energy of a fall so the shock isn’t transferred to the climber. Clearly, there is a lot of interesting materials science and engineering going on!

Prof. Erik Herbert, Materials Science and Engineering

Engineering Alumni Activity Spring 2021

Nancy M. McClain
Nancy M. McClain

Governor Gretchen Whitmer has appointed Michigan Tech alumna Nancy M. McClain of Redford to the Michigan Board of Engineerings. McClain is the lead engineering at Giffels Webster in Birmingham. She is a licensed professional engineer and holds a Bachelor of Science in Civil Engineering from Michigan Technological University. She is appointed to represent professional engineers for a term commencing April 1, and expiring March 31, 2025.

Josh Ivaniszek
Josh Ivaniszek

Michigan Tech alumnus Josh Ivaniszek was feature “Cruising through Juneau’s Port Expansion,” in Directions Magazine. Ivaniszek began his surveying career after graduating from Michigan Technological University with a double major in forestry and land surveying. Chilkat Surveying owner Josh Ivaniszek endured a challenging schedule and adverse conditions to provide accurate construction layout through two Alaskan winters.

Kim Nowack
Kim Nowack

Congratulations to CEE alumna and recent Academy inductee Kim Nowack who has been named the recipient of the American Council of Engineering Companies of Michigan’s Felix A. Anderson Image Award. The award is for outstanding individuals who take steps to improve the public image of the engineering profession. Nowack is the Mackinac Bridge Authority Executive Secretary.

Jason Arbuckle
Jason Arbuckle

Michigan Tech alumnus Jason Arbuckle who earned his BS, MS and PhD in Electrical Engineering from Michigan Tech, has been named to the newly formed role of Marine Autonomy Technology Lead for Brunswick Corporation. The story appeared in Yahoo Finance. Throughout his career, Arbuckle has been instrumental in the development of helm software for Mercury Marine products from single engine to six engine vessels and has been granted more than 45 patents related to marine control systems.

Ali Mirchi
Ali Mirchi

Civil Engineering PhD alumnus Ali Mirchi is quoted in the article “The return of a once-dying lake,” on the BBC. Mirchi, an assistant professor in the department of biosystems and agricultural engineering at Oklahoma State University, has extensively studied Lake Urmia in Iran. The lake is currently 3m (10ft) below its target water level. “So there’s quite a ways to go,” says Ali Mirchi.

Monique Wells
Monique Wells

DTE Energy announced the appointment of Monique Wells as its director of Diversity, Equity and Inclusion. Wells will be responsible for accelerating DTE’s progress in building a workplace where everyone feels valued and able to contribute their best energy toward serving our customers, communities and each other. Wells graduated from the University of Toledo with her Master’s degree in Career and Technical Education, and graduated from Michigan Technological University with her Bachelor’s degree in Chemical Engineering. She serves on Spring Arbor University’s Engineering Advisory Board, as well as Michigan Tech University College of Engineering’s Advisory Board.

Marty Lagina
Marty Lagina

Michigan Tech alumnus Marty Lagina was mentioned in the article “Who Owns Oak Island of ‘The Curse of Oak Island’ Isn’t Exactly Clear,” in Distractify. Brothers Rick and Marty Lagina are known as the stars of The Curse of Oak Island. Marty Lagina graduated from Michigan Tech with his mechanical engineering degree in 1977.

Thomas Fudge
Thomas Fudge

Michigan Tech alumnus Thomas Fudge has been appointed as a director of First Majestic Silver Corporation. Mr. Fudge brings over 42 years of professional mining experience having previously worked with companies including Tahoe Resources, Alexco Resources, Hecla Mining, and Sunshine Precious Metals. Mr. Fudge holds a Bachelor of Science degree in Mining Engineering from Michigan Technological University and has overseen numerous major mining construction projects in the United States, Mexico, Venezuela, Yukon Territory, Guatemala, and Peru.

John Matonich
John Matonich

Alumnus John Matonich was recently appointed to the Gogebic Community College Foundation Board of Directors. Matonich holds a BS in Surveying from Michigan Tech. He is a retired CEO/Chairman of ROWE Professional Services Company.

Shannon Kobs Nawotniak
Shannon Kobs Nawotniak

Michigan Tech alumna Shannon Kobs Nawotniak, (BS geology, ’03), an associate professor at Idaho State University, presents on “Submarines, Volcanoes, and the Search for Extraterrestrial Life” at Muskegon Community College. A graduate of Michigan Tech and SUNY Buffalo, Kobs Nawotniak serves as Geology Co-Lead on the NASA FINESSE project and Deputy Principal Investigator on the NASA BASALT project, both of which use terrestrial lavas to investigate planetary volcanoes.

Mike Olosky
Mike Olosky

Michigan Tech alumnus Mike Olosky (ME) has been named Chief Operating Officer of Simpson Strong-Tie. Olosky holds degrees in mechanical engineering from Michigan Technological University and Oakland University and received his MBA from Michigan State University’s Eli Broad School of Business.

New Funding for MMET Labs

MMET: Learn. Do. Succeed.

MMET Lecturer Kevin Johnson and MMET Department Chair John Irwin teamed up to raise funds to enhance fluid power offerings in the MMET department, with great success.

Amatrol

The two were awarded generous grants from the National Fluid Power Association (NFPA) and from the Parker-Hannifin Foundation to develop curriculum and provide hydraulic equipment to support the department’s Parker Motion and Control Laboratory at Michigan Tech.

Amatrol

There are two fluid power courses available for MET and/or Mechatronics students at Michigan Tech. Those are MET4377 – Applied Fluid Power, and MET4378 – Advanced Hydraulics: Electro- hydraulic Components & Systems. “The second course incorporates Industry 4.0 concepts used in automated manufacturing,” notes Irwin.

“There is an emphasis in the MMET department to incorporate Industry 4.0 concepts in the curriculum,” he adds.

“The MMET department is cooperating with Michigan Tech’s College of Computing to teach MS Mechatronics courses, utilizing the Electrical Engineering Technology (EET ) PLC and Robotics lab. Another example of this synergistic partnership is the delivery of a new Career and Technical Education course in Mechatronics offered by the MMET department for high school juniors and seniors. Implementation of this program included generous start-up funding from the Copper Country Intermediate School system to provide equipment for the high school students—both an Amatrol Skill Boss unit and additional Parker-Hannifin basic and advanced hydraulic training equipment.

MMET’s new Parker-Hannafin hydraulic training equipment

In addition, the MMET department has invested in additional Amatrol pneumatic training equipment to supplement the current capabilities in power systems.

The new Amatrol Skill Boss

“The MMET department is clearly the leader on the Michigan Tech campus for fluid power.” 

John Irwin

MMET Fall 2020 Senior Projects at Michigan Tech

Senior Design is thriving in the MMET department at Michigan Tech

“We’re very excited about two sponsored projects that are underway this fall 2020,” says John Irwin, chair of the Department of Manufacturing and Mechanical Engineering Technology at Michigan Tech.

“Members of our MMET Industrial Advisory Board from three different companies supported projects, providing two student groups with a scope of work to research solutions, develop alternatives to design and then manufacture prototypes of those solutions. We are very thankful for the support of Kohler, Balluff and Pettibone for the sponsorship of the fall 2020 projects.”

Be sure to check out the student presentation videos for the Balluff/Pettibone project and the Kohler project.

“The MMET Machine Shop remains extremely busy delivering courses that utilize the machine shop facility, generating parts and designs for research projects, machining and fabrication for enterprise projects, and of course the fabrication of MET senior capstone projects,” adds Irwin.

One of the recent additions to the machine shop are two CNC Tormach Lathes with an 8-station turret, and a full enclosure with coolant nozzle.

MET students are using the new equipment to develop a Tailstock redesign as a capstone senior project. The project started last spring. Check out their senior design video for full details

Read about previous MMET senior projects in greater detail here.

New Publications by Michigan Tech MMET Faculty

Dr. Michelle Jarvie-Eggart

Michelle Jarvie-Eggart, Senior Lecturer, co-authored a work-in-progress paper “Understanding First-Year Engineering Student Definitions of Engineering Disciplines” and also published and presented in the 2020 ASEE virtual conference proceedings. Learn more here.

Lecturer Kevin Johnson and John Irwin, Professor/Chair, co-authored two papers published and presented at the ATMAE and IAJC Virtual Joint Conference.

Kevin Johnson

The first paper, “Program Improvement Utilizing the SME CMfgT and NCEES FE Exam Results” and the second “Preparation of MET Students for the NCEES FE Exam – Lessons Learned” both present MET student exit exam results from over the past 10-15 years. Many MET students pass the very rigorous Fundamentals of Engineering (FE) exam qualifying them in most states to eventually become certified as Professional Engineers. Learn more here.

Dr. Irwin along with Assistant Professor David Labyak authored a paper published and presented in the 2020 ASEE virtual conference proceedings entitled “FEA Taught the Industry Way.” The paper shared result from a survey they conducted of students and industry. The survey sought input on methods used to teach FEA to develop skills for accurate analysis, physical testing of parts, and reporting results in a format required by industry professionals. Read the ASEE paper here.