Category: Lectures

Siva Kakula to Present PhD Defense Dec. 21, 3 pm

Graduate student Siva Krishna Kakula, Computer Science, will present his PhD defense, “Explainable Feature- and Decision-Level Fusion,” on Monday, December 21, 2020, from 3:00 to 5:00 p.m. EST Kakula is advised by Dr. Timothy Havens, College of Computing.

Siva Kakula earned his master of science in computer engineering at Michigan Tech in 2014, and completed a bachelor of technology in civil engineering at IIT Guwahati in 2011. His research interests include machine learning, pattern recognition, and information fusion.

Download the informational flier below.

Lecture Abstract

Information fusion is the process of aggregating knowledge from multiple data sources to produce more consistent, accurate, and useful information than any one individual source can provide. In general, there are three primary sources of data/information: humans, algorithms, and sensors. Typically, objective data—e.g., measurements—arise from sensors. Using these data sources, applications such as computer vision and remote sensing have long been applying fusion at different “levels” (signal, feature, decision, etc.). Furthermore, the daily advancement in engineering technologies like smart cars, which operate in complex and dynamic environments using multiple sensors, are raising both the demand for and complexity of fusion. There is a great need to discover new theories to combine and analyze heterogeneous data arising from one or more sources.

The work collected in this dissertation addresses the problem of feature- and decision-level fusion. Specifically, this work focuses on Fuzzy Choquet Integral (ChI)-based data fusion methods. Most mathematical approaches for data fusion have focused on combining inputs relative to the assumption of independence between them. However, often there are rich interactions (e.g., correlations) between inputs that should be exploited. The ChI is a powerful aggregation tool that is capable modeling these interactions. Consider the fusion of N sources, where there are 2N unique subsets (interactions); the ChI is capable of learning the worth of each of these possible source subsets. However, the complexity of fuzzy integral-based methods grows quickly, as the fusion of N sources requires training 2N-2 parameters; hence, we require a large amount of training data to avoid the problem of over-fitting. This work addresses the over-fitting problem of ChI-based data fusion with novel regularization strategies. These regularization strategies alleviate the issue of over-fitting while training with limited data and also enable the user to consciously push the learned methods to take a predefined, or perhaps known, structure. Also, the existing methods for training the ChI for decision- and feature-level data fusion involve quadratic programming (QP)-based learning approaches that are exorbitant with their space complexity. This has limited the practical application of ChI-based data fusion methods to six or fewer input sources. This work introduces an online training algorithm for learning ChI. The online method is an iterative gradient descent approach that processes one observation at a time, enabling the applicability of ChI-based data fusion on higher dimensional data sets.

In many real-world data fusion applications, it is imperative to have an explanation or interpretation. This may include providing information on what was learned, what is the worth of individual sources, why a decision was reached, what evidence process(es) were used, and what confidence does the system have on its decision. However, most existing machine learning solutions for data fusion are “black boxes,” e.g., deep learning. In this work, we designed methods and metrics that help with answering these questions of interpretation, and we also developed visualization methods that help users better understand the machine learning solution and its behavior for different instances of data.

College of Computing Convocation is December 18, 3:30 pm

Congratulations, Class of 2020!

We are looking forward to celebrating the accomplishments of our graduates at a Class of 2020 virtual Convocation program on Friday, December 18, 2020, at 3:30 p.m. EST.

The celebration will include special well-wishes from CC faculty and staff, and many will be sporting their graduation regalia. It is our privilege to welcome Ms. Dianne Marsh, 86, ’92, as our Convocation speaker. Dianne is Director of Device and Content Security for Netflix, and a member of the new College of Computing External Advisory Board.

We may be spread across the country and world this December, but we can still celebrate with some style. We look forward to sharing our best wishes with the Class of 2020 and wishing them continued success as they embark on the next phase of their lives!

This December, 40 students are expected to graduate with College of Computing degrees, joining 92 additional Class of 2020 PhD, MS, and BS alumni.

Dianne Marsh ’86, ’92 is Director of Device and Content Security for Netflix. Her team is responsible for securing the Netflix streaming client ecosystem and advancing the platform security of Netflix-enabled devices. Dianne has a BS (’86) and MS (’92) in Computer Science from Michigan Tech.

Visit the Class of 2020 Webpage

Congratulations Graduates. We’re proud of you.

1010 Minutes with … Chuck Wallace

Chuck Wallace, center, at a BASIC computer tutoring session at Portage Lake District Library, Houghton.

You are invited to spend one-zero-one-zero—that is, 10 minutes—with Dr. Charles Wallace on Wednesday, December 9, from 5:30 to 5:40 p.m.

Wallace is associate dean for curriculum and instruction and associate professor of computer science in the College of Computing at Michigan Tech. Wallace is a researcher with the ICC’s Human-Centered Computing and Computing Education research groups.

In his informal discussion, Dr. Wallace will talk about computing at Michigan Tech, his research on how humans can better understand, build, and use software, and answer your questions.

We look forward to spending 1010 minutes with you!

Join 1010 with Chuck Wallace here.

Next week, on Wednesday, December 15, at 5:30 p.m., Assistant Professor Dr. Nathir Rawashdeh, Applied Computing, will present his current research work, including his use of artificial intelligence for autonomous driving on snow covered roads, and a mobile robot using ultraviolet light to disinfect indoor spaces.

Did you miss 1010 with Chuck Wallace on December 9? Watch the video below.

Sarah Sun to Present ME-EM Graduate Seminar Dec. 3, 4 pm

by Mechanical Engineering – Engineering Mechanics

The next virtual Graduate Seminar Speaker will be held at 4 p.m. tomorrow (Dec. 3) via Zoom. Sarah Sun (ME-EM) will present “E-Logo: Embroidered Wearable Electronics.”

Sun is an associate professor in the Department of Mechanical Engineering-Engineering Mechanics and an affiliated associate professor in the Department of Biomedical Engineering at Michigan Tech since 2014.

Sidike Paheding Lecture is Dec. 11, 3 pm

Assistant Professor Sidike Paheding, Applied Computing, will present his lecture, “Deep Neural Networks for UAV and Satellite Remote Sensing Image Analysis,” on Dec. 11, 2020, at 3:00 p.m. via online meeting.

Paheding’s research focuses on the areas of computer vision, machine learning, deep learning, image/video processing, and remote sensing.

The lecture is presented by the Department of Computer Science.

Lecture Abstract

Remote sensing data can provide non-destructive and instantaneous estimates of the earth’s surface over a large area, and has been accepted as a valuable tool for agriculture, weather, forestry, defense, biodiversity, etc. In recent years, deep neural networks (DNN), as a subset of machine learning. for remote sensing has gained significant interest due to advances in algorithm development, computing power, and sensor systems.

This talk will start with remote sensing image enhancement framework, and then primarily focuses on DNN architectures for crop yield prediction and heterogeneous agricultural landscape mapping using UAV and satellite imagery.

Speaker Biography

Paheding is an associate editor of the Springer journal Signal, Image, and Video Processing, ASPRS Journal Photogrammetric Engineering & Remote Sensing, and serves as a guest editor/reviewer for a number of reputed journals. He has advised students at undergraduate, M.S., and Ph.D. levels, and authored/coauthored close to 100 research articles.

ECE Doctoral Defense – Yongyu Wang

by Electrical and Computer Engineering

Computer Engineering doctoral candidate Yongyu Wang will defend at 10 a.m. Tuesday (Dec 1) via Zoom.

The title of his presentation is “High-Performance Spectral Methods for Graph-Based Machine Learning.” Co-advisors are Chee-Wooi Ten (ECE) and Zhuo Feng (ECE).

Chee-wooi Ten is a researcher with the ICC’s Cyber-Physical Systems group.

MTRI Research Scientist Joel LeBlanc to Present Lecture Dec. 4, 3 pm

Senior Research Scientist Joel LeBlanc of Michigan Tech Research Institute (MTRI) will present his lecture, “Testing the Validity of Physical (Software) Models in Inverse Problems,” on Friday, December 4, 2020, at 3:00 p.m. via online meeting.

The lecture is presented by the Michigan Tech Department of Computer Science.

Lecturer Bio

LeBlanc has a Ph.D. in Statistical Signal Processing. His areas of expertise include statistical signal processing, applied nonconvex optimization, EO/IR imaging, and Synthetic Aperture Radar (SAR) imaging. His research interests are in information theoretic approaches to inverse-imaging, computational techniques for solving large inverse problems, and fundamental limits of sensing.

Lecture Abstract

Numerical simulations are the modern analog of the “physical system” referenced by Rosenblueth and Wiener in their 1945 paper “The Role of Models in Science.” This talk will introduce the inverse-problem approach for making inferences about the physical world and discuss how the Maximum Likelihood (ML) principle leads to both performant estimators and algorithm agnostic bounds on performance. The resulting estimators and associated bounds are only valid when global convergence is achieved, so I will present new results on global convergence testing that I believe are widely applicable. Finally, I will discuss some of my ongoing research interests: optimal resource allocation and testing for adversarial behavior through model relaxation.

Michigan Tech Research Institute focuses on technology development and research to sense and understand natural and human-made environments. Through innovation, education, and collaboration, the Institute supports meaningful solutions to critical global issues, from infrastructure to invasive species, national security to public health.

Sangyoon Han to Present Chemistry Seminar this Friday, Nov. 13, at 3 pm

A Chemistry Seminar will be presented Friday, September 13, 2020, at 3:00 p.m., via online meeting.

Dr. Sangyoon Han will present his lecture, “Toward Discovery of the Initial Stiffness-Sensing Mechanism by Adherent Cells.” Han is an Assistant Professor in Biomedical Engineering, an Affiliate Assistant Professor in Mechanical Engineering-Engineering Mechanics, and advisor for the Korean Student Association. Han is a member of the ICC’s Center for Data Science.

Lecture Abstract

The stiffness of the extracellular matrix (ECM) determines nearly every aspect of cellular/tissue development and contributes to metastasis of cancer. Adherent cells’ stiffness-sensing of the ECM triggers intracellular signaling that can affect proliferation, differentiation, and migration of the cells. However, biomechanical and molecular mechanisms behind this stiffness sensing have been largely unclear. One critical early event during the stiff-sensing is believed to be a force transmission through integrin-based adhesions, changing the molecular conformation of the molecules comprising the adhesions that link the ECM to the cytoskeleton. To understand this force transmission, my lab develops experimental and computational techniques, which include soft-gel-based substrates, live-cell imaging, computer-vision-based analysis, and inverse mechanics, etc. In this talk, I will talk about how we use soft-gel to quantify the spatial distribution of mechanical force transmitted by a cell, how we use light microscopy and computer vision to analyze the focal adhesions, and how these techniques are related to stiffness sensing. In particular, I will show you new data where cells can transmit different levels of traction forces in response to varying stiffness, even when the activity of the major motor protein, myosin, is inhibited. At the end of the talk, potential molecules responsible for the differential transmission will be discussed. 

Researcher Bio

Sangyoon Han received his Ph.D. in Mechanical Engineering at the University of Washington (UW) in 2012 and did postdoctoral training with Dr. Gaudenz Danuser in the Department of Cell Biology at Harvard Medical School and the University of Texas Southwestern Medical Center for five years until 2017. Before the Ph.D., he received B.S and M.S. degree from Mechanical Engineering at Seoul National University, Seoul, Korea in 2002 and 2004.

He joined Michigan Tech, Biomedical Engineering from fall 2017, and started Mechanobiology Laboratory. His lab’s interests are in understanding the dynamic nature of force modulation occurring across cell adhesions and cytoskeleton that regulate cells’ environmental sensing. His lab develops a minimally-perturbing experimental approach and computational techniques, including soft-gel fabrication, nano-mechanical tools, live-cell microscopy, and image data modeling, to capture the coupling between force modulation and cellular molecular dynamics.

Accessible Computing Expert Dr. Richard Ladner to Present Keynote November 13

The ICC’s Center for Human-Centered Computing invites Michigan Tech faculty, staff, students, and alumni to a keynote lecture by leading accessible design expert and research scientist Dr. Richard E. Ladner on Friday, November 13, 2020, at 1:00 p.m., via online meeting.

His talk, “Accessible K-12 Computer Science Education,” is the final event of HCC’s Husky Research Celebration, a showcase of interdisciplinary HCC research through a series of virtual lab tours, virtual mini talks, and lectures presented in a 360-degree virtual space. More details here.

Ladner is a Professor Emeritus in the Paul G. Allen School of Computer Science and Engineering at the University of Washington, where he has been on the faculty since 1971.

His current research is in the area of accessible computing, a subarea of human-computer interaction (HCI). Much of his current research focuses on accessible educational technology.

Ladner is principal investigator of the NSF-funded AccessComputing Alliance, which works to increase participation of students with disabilities in computing fields. He is also a PI of the NSF-funded AccessCSforAll, which is focused on preparing teachers of blind, deaf, and learning disabled children to teach their students computer science.

Lecture Title: Accessible K-12 Computer Science Education

Lecture Abstract: For the past twelve years there has been rapid growth in the teaching of computer science in K-12 with a particular focus on broadening the participation of students from underrepresented groups in computing including students with disabilities. Popular tools such as Scratch, ScratchJr, and many other block-based programming environments have brought programming concepts to millions of children around the world. Code.org’s Hour of Code has hundreds of activities with almost half using block-based environments. New computer science curricula such as Exploring Computer Science and Computer Science Principles have been implemented using inaccessible tools. In the meantime the United States has about 8 million school children with recognized disabilities which is about 16% of the K-12 student population. It is generally not the case that these students are adequately served by the current K-12 computer science education or any of the block-based programming environments.

In particular, the approximately 30,000 blind and visually impaired children are left out because only a few educational tools are screen reader accessible. In this talk we address this problem by describing two programming environments that are accessible: the Quorum Language and Blocks4All. The Quorum Language, created by Andreas Stefik, is a text-based programming language whose syntax and semantics have been created to be as usable as possible using randomized controlled trials. The language is not at all intimidating to children. For younger children, Lauren Milne created Blocks4All a block-based programming environment that can be used by anyone including children who are blind or visually impaired. Blocks4All uses a touchscreen platform similar to ScratchJr and takes advantage of the fact the blind children already know how to use touchscreen devices using their built-in screen readers. The challenge for the future of K-12 computer science is to be more inclusive to all students regardless of race, ethnicity, gender, socioeconomic status, and disability status.

Founded in 2015, the Institute of Computing and Cybersystems (ICC) promotes collaborative, cross-disciplinary research and learning experiences in the areas of computing education, cyber-physical systems, cybersecurity, data sciences, human-centered computing, and scalable architectures and systems, for the benefit of Michigan Technological University and society at large.

The ICC creates and supports an arena in which faculty and students work collaboratively across organizational boundaries in an environment that mirrors contemporary technological innovation. The ICC’s 55 members represent more than 20 academic disciplines at Michigan Tech.

The Center for Human-Centered Computing (HCC) focuses on the research and development of novel interfaces for human-agent interaction, assistive technologies, intelligent health, computational modeling, and examining trust and decision making in distributed systems.

The Center is directed by Associate Professor Elizabeth Veinott, Cognitive and Learning Sciences, a cognitive psychologist who focuses on two main areas of research: decision making and learning using serious video games.