Also In This Section
  • Categories

  • Recent News

  • Category: Research

    Guy Hembroff Awarded CCISD Contract for CTE Cybersecurity Course

    Guy Hembroff, associate professor, CMH Division, and director of the Health Informatics graduate program and the Institute of Computing and Cybersystem’s Center for Cybersecurity, is the principal investigator on a one-year project that has been awarded a $40,000 contract from the Copper Country Intermediate School District (CCISD). The project is titled “Cybersecurity Course for Career and Technical Education (CTE) Program.”

    The CCISD CTE program provides courses and labs to high school-age students from Baraga, Houghton, and Keweenaw counties. It is intended to provide the academic background, technical ability, and work experience that today’s youth will need to succeed in today’s changing job market.

    The contract funds instructor time, use of facilities, labs, and equipment, and materials and supplies. Student enrolled in the program meet on Michigan Tech’s campus for two hours per day, Monday through Friday, from September to May. 

    The CTE Cybersecurity course covers topics including security architecture, cryptographic systems, security protocols, and security management tools. Students also learn about virus and worm propagation, malicious software scanning, cryptographic tools, intrusion detection, DoS, firewalls, best practices, and policy management.

    Learn more about the CCISD CTE program at: https://www.copperisd.org/career-technical-education.


    Kuilin Zhang Awarded $58K Contract

    Kuilin Zhang (CEE/MTTI), a member of the ICC’s Center for Cyber-Physical Systems, is the principal investigator on a project that has received a $58,556 research and development contract from the University of Illinois Urbana Champaign. The one-year project is entitled, “Leveraging Connected Highway Vehicle Platooning Technology to Improve the Efficiency and Effectiveness of Train Fleeting.”


    Tim Havens Receives $120K Award from Signature Research, Inc.

    Timothy Havens

    Tim Havens, College of Computing associate dean for research, has been awarded an 18-month, $120,000 grant by Signature Research, Inc. The project, “Machine Learning for Human-Based Visual Detection Metrics,” contributes to an effort to develop a methodology that predicts the impact to human vision due to the existence of atmospheric particles. Havens is also the director of the Institute of Computing and Cybersystems and the William and Gloria Jackson Associate Professor of Computer Systems.

    Abstract: This project contributes to an effort to develop a methodology that predicts the impact to human vision due to the existence of atmospheric particles. Due to the variability of atmospheric conditions and particulate matter (dust, ice, etc.) extensive field test campaigns to characterize the impacts to human vision are impractical. As a result, a model-based approach must be developed in order to evaluate all possible conditions in a virtual environment. It is envisioned that this approach will incorporate both human in-the-loop evaluations as well as generation of machine learning algorithms to serve as an in-situ human observer.

    Signature Research, Inc. provides solutions to DoD and the Intelligence Community, specializing in Signature Phenomenology, Analysis, and Modeling of items of military interest covering the breadth of the electromagnetic spectrum. Signature Research, Inc. engineers and scientists have developed methodologies, tools and products to help visualize and interpret electromagnetic signatures, and Signature Research, Inc. staff are recognized experts within the various communities in which they work. SGR’s corporate headquarters is located in Calumet, Michigan, with a second operating location in Navarre, Florida near Eglin Air Force Base and Hurlburt Field. http://signatureresearchinc.com


    All Researchers Invited to Research Development Day 2020

    by Research Development Office

    All Michigan Tech researchers are invited to participate in the 2020 Research Development Day at Michigan Tech. The event will be held Thursday, Jan. 9. The content of the 2020 event is new and designed for both new and returning attendees.

    Multiple sessions are planned for faculty at all career stages and from all disciplines. Research staff and post-docs from any discipline are also likely to find sessions of interest. We are excited to welcome Jose Fuentes as our keynote speaker.

    Fuentes is an experienced faculty researcher at Penn State, with a significant track record of international work and broad research impact. As in previous years, we will end the day with research recognitions, celebrating accomplishments from across the university over the past year, followed by a networking social.

    A condensed agenda is found on the reservation form. Your RSVP is requested by Jan. 3 to finalize meal counts and room arrangements. If your schedule does not permit you to attend the full day, the RSVP allows you to sign up for morning, lunch, and/or afternoon sessions.

    The RSVP form should take only a minute or two to complete. A reminder and final agenda will be sent in the new year. Please contact rd-l@mtu.edu with any questions.


    Nathir Rawashdeh To Present Talk Fri., Dec. 6

    Nathir Rawashdeh

    Nathir Rawashdeh, College of Computing Assistant Professor of Mechatronics, Electrical, and Robotics Engineering Technology, will present a talk this Friday, December 6, from 3:00 to 4:00 p.m., in Rekhi 214. Rawashdeh will present a review of recent advancements in Unmanned Ground Vehicle (UGV) applications, hardware, and software with a focus on vehicle localization and autonomous navigation. Refreshments will be served.

    Abstract: Unmanned Ground Vehicles (UGV) are being applied in many scenarios including, indoors, outdoors, and even extraterrestrial. Advancements in hardware and software algorithms reduce their cost and enable the creation of complete UGV platforms designed for custom application development, as well as research into new sensors and algorithms.


    Robert Pastel Presents at Social Science History Association Annual Meeting

    Robert Pastel

    Robert Pastel (Computer Science/ICC Center for Human Centered Computing), along with Gary Spikberg (MS Industrial Heritage and Archaeology) and Don Lafreniere (SS/GLRC), presented “A Semiautomated approach to Creating Record Linkages and High Resolution Geocoding Across Historical Datasets” at the annual meeting of the Social Science History Association, which took place November 21-24, 2019, in Chicago, IL.

    The Social Science History Association is an interdisciplinary organization that publishes a journal, Social Science History, organizes an annual conference, supports graduate student travel to the conference, and awards book prizes. With scholars from history, economics, sociology, demography, anthropology, and other social sciences, the association brings together scholars in thematic networks where they can explore common questions.


    Weihua Zhou to Present Friday Seminar Talk

    Weihua Zhou

    The College of Computing (CC) will present a Friday Seminar Talk on November 15, at 3:00 p.m. in Rekhi 214. Featured this week is Weihua Zhou, assistant professor of Health Informatics and member of the ICC’s Center for Data Sciences. He will present his research titled: “Information retrieval and knowledge discovery from cardiovascular images to improve the treatment of heart failure.” Refreshments will be served.

    Abstract: More than 5 million Americans live with heart failure, and the annual new incidence is about 670,000. Once diagnosed, around 50% of patients with heart failure will die within 5 years. Cardiac resynchronization therapy (CRT) is a standard treatment for heart failure. However, based on the current guidelines, 30-40% of patients who have CRT do not benefit from CRT. One of Zhou’s research projects is to improve CRT favorable response by information retrieval and knowledge discovery from clinical records and cardiovascular images. By applying statistical analysis, machine learning, and computer vision to his unique CRT patient database, Zhou has made a number of innovations to select appropriate patients and navigate the real-time surgery. His CRT software toolkit is being validated by 17 hospitals in a large prospective clinical trial.


    Kuilin Zhang is PI on $567K Federal Railroad Administration Project

    Khuilin Zhang

    Kuilin Zhang (CEE/MTTI), a member of the ICC Center for Cyber-Physical Systems (CPS), is the primary investigator on a project that has received a $567,230 contract with the Federal Railroad Administration. This project is entitled, “Developing Safe and Efficient Driving and Routing Strategies at Railroad Grade Crossings Based on Highway-Railway Connectivity.” Pasi Lautala (CEE) is the Co-PI on this potential two-year project.


    Zhen Liu Co-author of Publication in Cold Regions Science and Technology

    Zhen Liu, associate professor of civil and environmental engineering and member of the ICC’s Center for Cyber-Physical Systems (CPS), is co-author of the article, “A multivariate freezing-thawing depth prediction model for spring load restriction,” which was published August 6, 2019, in the journal Cold Regions Science and Technology, which is published by Elsevier. Co-authors of the article are Ting Bio and John Bland.

    Abstract: Road damages induced by heavily loaded truck traffic during the spring thaw are a major road distress in cold regions. To minimize these damages, Spring Load Restriction (SLR) is widely applied in the U.S., Canada, and other countries during the early thawing season by controlling the movement of freight-carrying trucks and heavy equipment travel until the thawing ends. Most SLR policies rely on the Freezing Depth (FD) and Thawing Depth (TD), especially the latter one. Therefore, accurate predictions of FD and TD are important to prevent both the extensive damage to the pavement due to the late placement or early removal of SLR and the economic loss of road users due to an unnecessarily long SLR period. Here, we propose a new multivariate model for predicting FD and TD in support of SLR decision-making. The model gives a curving surface of FD and TD in a 3-dimensional space, instead of 2-dimensional in traditional methods, by considering both the freezing and thawing indices in the entire freeze-thaw cycle. For model evaluations, yearly field data measured at five typical sites from 104 sites in Michigan were adopted. The evaluation results showed that the proposed model is accurate in predicting FD and TD for most sites. Compared to the previous TD predictions in the existing study, the TD predictions with the proposed model have been significantly improved. In addition, this study provides field data that have not been reported earlier in the literature and that can be used for validating other prediction models. The reported work is ready for practice for roadways in cold regions to support SLR decision-making.

    https://digitalcommons.mtu.edu/michigantech-p/406

    Citation: Bao, T., Liu, Z., & Bland, J. (2019). A multivariate freezing-thawing depth prediction model for spring load restriction. Cold Regions Science and Technology, 167.http://dx.doi.org/10.1016/j.coldregions.2019.102856


    Bo Chen Receives $250K NSF Award for Mobile PDE Systems Research

    Bo Chen, CS

    Bo Chen, assistant professor of computer science and member of the Institute of Computing and Cybersystems Center for  Cybersecurity, is the principal investigator on a project that has received a $249,918 research and development grant from the National Science Foundation. The project is entitled, “SaTC: CORE: Small: Collaborative: Hardware-Assisted Plausibly Deniable System for Mobile Devices.” This is a potential three-year project.

    Abstract: Mobile computing devices typically use encryption to protect sensitive information. However, traditional encryption systems used in mobile devices cannot defend against an active attacker who can force the mobile device owner to disclose the key used for decrypting the sensitive information. This is particularly of concern to dissident users who are targets of nation states. An example of this would be a human rights worker collecting evidence of untoward activities in a region of oppression or conflict and storing the same in an encrypted form on the mobile device, and then being coerced to disclose the decryption key by an official. Plausibly Deniable Encryption (PDE) has been proposed to defend against such adversaries who can coerce users into revealing the encrypted sensitive content. However, existing techniques suffer from several problems when used in flash-memory-based mobile devices, such as weak deniability because of the way read/write/erase operations are handled at the operating systems level and at the flash translation layer, various types of side channel attacks, and computation and power limitations of mobile devices. This project investigates a unique opportunity to develop an efficient (low-overhead) and effective (high-deniability) hardware-assisted PDE scheme on mainstream mobile devices that is robust against a multi snapshot adversary. The project includes significant curriculum development activities and outreach activities to K-12 students.

    This project fundamentally advances the mobile PDE systems by leveraging existing hardware features such as flash translation layer (FTL) firmware and TrustZone to achieve a high deniability with a low overhead. Specifically, this project develops a PDE system with capabilities to: 1) defend against snapshot attacks using raw flash memory on mobile devices; and 2) eliminate side-channel attacks that compromise deniability; 3) be scalable to deploy on mainstream mobile devices; and 4) efficiently provide usable functions like fast mode switching. This project also develops novel teaching material on PDE and cybersecurity for K-12 students and the Regional Cybersecurity Education Collaboration (RCEC), a new educational partnership on cybersecurity in Michigan.

    Publications related to this research:

    [DSN ’18] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen Tao Zhu, Yangguang Tian, Zhan Wang, and Albert Ching. MobiCeal: Towards Secure and Practical Plausibly Deniable Encryption on Mobile Devices. The 48th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN ’18), June 2018 (Acceptance rate: 28%)
    [Cybersecurity ’18] Qionglu Zhang, Shijie Jia, Bing Chang, Bo Chen. Ensuring Data Confidentiality via Plausibly Deniable Encryption and Secure Deletion – A Survey. Cybersecurity (2018) 1: 1.
    [ComSec ’18 ] Bing Chang, Yao Cheng, Bo Chen, Fengwei Zhang, Wen Tao Zhu, Yingjiu Li, and Zhan Wang. User-Friendly Deniable Storage for Mobile Devices. Elsevier Computers & Security, vol. 72, pp. 163-174, January 2018
    [CCS ’17] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. DEFTL: Implementing Plausibly Deniable Encryption in Flash Translation Layer. 2017 ACM Conference on Computer and Communications Security (CCS ’17), Dallas, Texas, USA, Oct 30 – Nov 3, 2017 (Acceptance rate: 18%)
    [ACSAC ’15] Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. MobiPluto: File System Friendly Deniable Storage for Mobile Devices. 2015 Annual Computer Security Applications Conference (ACSAC ’15), Los Angeles, California, USA, December 2015 (Acceptance rate: 24.4%)
    [ISC ’14] Xingjie Yu, Bo Chen, Zhan Wang, Bing Chang, Wen Tao Zhu, and Jiwu Jing. MobiHydra: Pragmatic and Multi-Level Plausibly Deniable Encryption Storage for Mobile Devices. The 17th Information Security Conference (ISC ’14), Hong Kong, China, Oct. 2014

    Link to more information about this project: https://snp.cs.mtu.edu/research/index.html#pde