Sun Named to Lou and Herbert Wacker Professorship in Mechanical Engineering

by Office of the Provost & Senior VP for Academic Affairs

Ye “Sarah” Sun (ME-EM) has accepted the Lou and Herbert Wacker Professorship in Mechanical Engineering, which was created to retain and attract high-quality faculty who are at the top of their profession, can excite students to think beyond the classroom material, and knows how to integrate their research into the classroom.

Sun was chosen for this position as she is recognized as a rising star and outstanding researcher in the area of wearable sensors, systems, and robotics and a respected member of the smart health community.

In recognition of her innovative research in wearable sensors, Sun’s NSF CAREER award was selected for presentation to congressional offices in April 2019.

Sun is the director of the Institute of Computing and Cybersystems’s Center for Cyber-Physical Systems.

Among her research honors is the prestigious National Science Foundation (NSF) CAREER Research Award on “System-on-Cloth: A Cloud Manufacturing Framework for Embroidered Wearable Electronics.”

Sun will use this recognition and support to enhance her research in wearable and soft robotics. Her goal is to develop flexible textile robotics by leveraging the physical understanding and modeling of textile materials and dynamics and the recent advances of morphological computing.

Textile robotics are not only able to enhance human capabilities via wearable design but also achieve autonomous locomotion. The controllable structures of textiles directly provide a unified platform that is capable of integrating sensing and actuating into textile robotics itself. The positioning support will be used to recruit graduate students and to set up the manufacturing platform.

1010 with … Nathir Rawashdeh, Weds., Dec. 16

Nathir Rawashdeh (right) and Dan Fuhrmann, Interim Dean, Dept. of Applied Computing

You are invited to spend one-zero-one-zero—that is, ten—minutes with Dr. Nathir Rawashdeh on Wednesday, December 16, from 5:30 to 5:40 p.m.

Rawashdeh is assistant professor of applied computing in the College of Computing at Michigan Tech.

He will present his current research work, including the using artificial intelligence for autonomous driving on snow covered roads, and a mobile robot using ultraviolet light to disinfect indoor spaces. Following, Rawashdeh will field listener questions.

We look forward to spending 1010 minutes with you!

Did you miss last week’s 1010 with Chuck Wallace? Watch the video below.

The 1010 with … series will continue on Wednesday afternoons in the new year on January 6, 13, 20, and 27 … with more to come!

Celebrate Husky Innovation January 25-29

Husky Innovate is organizing Innovation Week, a series of innovation themed events the week of January 25 to 29, 2020. Our goal is to provide opportunities for students, faculty and alumni to meet virtually to engage around the topic of innovation.

We will host panel discussions, alumni office hours and the Bob Mark Business Model Pitch Competition from 5:30 to 7:30 p.m. on Thursday, January 28.

We will celebrate entrepreneurship, innovative research and projects on campus and within our extended MTU community.

If you are interested in hosting an innovation tour, participating in a panel discussion, leading a workshop or something else, sign-up here.

Faculty and staff are invited to celebrate innovation week with an innovation themed learning module or student activity.

Siva Kakula to Present PhD Defense Dec. 21, 3 pm

Graduate student Siva Krishna Kakula, Computer Science, will present his PhD defense, “Explainable Feature- and Decision-Level Fusion,” on Monday, December 21, 2020, from 3:00 to 5:00 p.m. EST Kakula is advised by Dr. Timothy Havens, College of Computing.

Siva Kakula earned his master of science in computer engineering at Michigan Tech in 2014, and completed a bachelor of technology in civil engineering at IIT Guwahati in 2011. His research interests include machine learning, pattern recognition, and information fusion.

Download the informational flier below.

Lecture Abstract

Information fusion is the process of aggregating knowledge from multiple data sources to produce more consistent, accurate, and useful information than any one individual source can provide. In general, there are three primary sources of data/information: humans, algorithms, and sensors. Typically, objective data—e.g., measurements—arise from sensors. Using these data sources, applications such as computer vision and remote sensing have long been applying fusion at different “levels” (signal, feature, decision, etc.). Furthermore, the daily advancement in engineering technologies like smart cars, which operate in complex and dynamic environments using multiple sensors, are raising both the demand for and complexity of fusion. There is a great need to discover new theories to combine and analyze heterogeneous data arising from one or more sources.

The work collected in this dissertation addresses the problem of feature- and decision-level fusion. Specifically, this work focuses on Fuzzy Choquet Integral (ChI)-based data fusion methods. Most mathematical approaches for data fusion have focused on combining inputs relative to the assumption of independence between them. However, often there are rich interactions (e.g., correlations) between inputs that should be exploited. The ChI is a powerful aggregation tool that is capable modeling these interactions. Consider the fusion of N sources, where there are 2N unique subsets (interactions); the ChI is capable of learning the worth of each of these possible source subsets. However, the complexity of fuzzy integral-based methods grows quickly, as the fusion of N sources requires training 2N-2 parameters; hence, we require a large amount of training data to avoid the problem of over-fitting. This work addresses the over-fitting problem of ChI-based data fusion with novel regularization strategies. These regularization strategies alleviate the issue of over-fitting while training with limited data and also enable the user to consciously push the learned methods to take a predefined, or perhaps known, structure. Also, the existing methods for training the ChI for decision- and feature-level data fusion involve quadratic programming (QP)-based learning approaches that are exorbitant with their space complexity. This has limited the practical application of ChI-based data fusion methods to six or fewer input sources. This work introduces an online training algorithm for learning ChI. The online method is an iterative gradient descent approach that processes one observation at a time, enabling the applicability of ChI-based data fusion on higher dimensional data sets.

In many real-world data fusion applications, it is imperative to have an explanation or interpretation. This may include providing information on what was learned, what is the worth of individual sources, why a decision was reached, what evidence process(es) were used, and what confidence does the system have on its decision. However, most existing machine learning solutions for data fusion are “black boxes,” e.g., deep learning. In this work, we designed methods and metrics that help with answering these questions of interpretation, and we also developed visualization methods that help users better understand the machine learning solution and its behavior for different instances of data.

College of Computing Convocation is December 18, 3:30 pm

Congratulations, Class of 2020!

We are looking forward to celebrating the accomplishments of our graduates at a Class of 2020 virtual Convocation program on Friday, December 18, 2020, at 3:30 p.m. EST.

The celebration will include special well-wishes from CC faculty and staff, and many will be sporting their graduation regalia. It is our privilege to welcome Ms. Dianne Marsh, 86, ’92, as our Convocation speaker. Dianne is Director of Device and Content Security for Netflix, and a member of the new College of Computing External Advisory Board.

We may be spread across the country and world this December, but we can still celebrate with some style. We look forward to sharing our best wishes with the Class of 2020 and wishing them continued success as they embark on the next phase of their lives!

This December, 40 students are expected to graduate with College of Computing degrees, joining 92 additional Class of 2020 PhD, MS, and BS alumni.

Dianne Marsh ’86, ’92 is Director of Device and Content Security for Netflix. Her team is responsible for securing the Netflix streaming client ecosystem and advancing the platform security of Netflix-enabled devices. Dianne has a BS (’86) and MS (’92) in Computer Science from Michigan Tech.

Visit the Class of 2020 Webpage

Congratulations Graduates. We’re proud of you.

1010 Minutes with … Chuck Wallace

Chuck Wallace, center, at a BASIC computer tutoring session at Portage Lake District Library, Houghton.

You are invited to spend one-zero-one-zero—that is, 10 minutes—with Dr. Charles Wallace on Wednesday, December 9, from 5:30 to 5:40 p.m.

Wallace is associate dean for curriculum and instruction and associate professor of computer science in the College of Computing at Michigan Tech. Wallace is a researcher with the ICC’s Human-Centered Computing and Computing Education research groups.

In his informal discussion, Dr. Wallace will talk about computing at Michigan Tech, his research on how humans can better understand, build, and use software, and answer your questions.

We look forward to spending 1010 minutes with you!

Join 1010 with Chuck Wallace here.

Next week, on Wednesday, December 15, at 5:30 p.m., Assistant Professor Dr. Nathir Rawashdeh, Applied Computing, will present his current research work, including his use of artificial intelligence for autonomous driving on snow covered roads, and a mobile robot using ultraviolet light to disinfect indoor spaces.

Did you miss 1010 with Chuck Wallace on December 9? Watch the video below.

Sarah Sun to Present ME-EM Graduate Seminar Dec. 3, 4 pm

by Mechanical Engineering – Engineering Mechanics

The next virtual Graduate Seminar Speaker will be held at 4 p.m. tomorrow (Dec. 3) via Zoom. Sarah Sun (ME-EM) will present “E-Logo: Embroidered Wearable Electronics.”

Sun is an associate professor in the Department of Mechanical Engineering-Engineering Mechanics and an affiliated associate professor in the Department of Biomedical Engineering at Michigan Tech since 2014.

Today is #GivingTuesday

 Today (Dec. 1) is #GivingTuesday, a global generosity movement unleashing the power of people and organizations to transform their communities and the world.

GivingTuesday was created in 2012 and has grown into a global movement that inspires hundreds of millions of people to give, collaborate, and celebrate generosity.

How you can participate at Michigan Tech:

• Support any area of campus
A gift to Michigan Tech or any specific area of campus will help us prepare students to create the future. Give now.

• Help Michigan Tech students through scholarships and fellowships
Scholarship/fellowship funding is Michigan Tech’s top strategic priority. This is especially true now with the need created by COVID-19. Donor-funded scholarships/fellowships come through two sources — the Annual Scholarship/Fellowship Fund and the Endowed Scholarship/Fellowship Fund. Learn more.

• Make a gift to the Husky Emergency Assistance Fund (HEAF)
The HEAF has been established to help provide financial relief for the Michigan Tech campus community (students and employees) who are experiencing financial hardship as a result of crises (including COVID-19). Donate to the HEAF.

• Donate food or resources to the Husky Food Access Network
The on-campus food pantry has helped hundreds of students in their time of need. Make a financial donation or email huskyfan@mtu.edu to coordinate a food donation during social distancing protocol.

Last year, GivingTuesday generated $2 billion in giving, just in the United States, and inspired millions of people worldwide to volunteer, perform countless acts of kindness, and donate their voices, time, money, and goods.

Join the movement! Make a gift to Michigan Tech today.

Sidike Paheding Lecture is Dec. 11, 3 pm

Assistant Professor Sidike Paheding, Applied Computing, will present his lecture, “Deep Neural Networks for UAV and Satellite Remote Sensing Image Analysis,” on Dec. 11, 2020, at 3:00 p.m. via online meeting.

Paheding’s research focuses on the areas of computer vision, machine learning, deep learning, image/video processing, and remote sensing.

The lecture is presented by the Department of Computer Science.

Lecture Abstract

Remote sensing data can provide non-destructive and instantaneous estimates of the earth’s surface over a large area, and has been accepted as a valuable tool for agriculture, weather, forestry, defense, biodiversity, etc. In recent years, deep neural networks (DNN), as a subset of machine learning. for remote sensing has gained significant interest due to advances in algorithm development, computing power, and sensor systems.

This talk will start with remote sensing image enhancement framework, and then primarily focuses on DNN architectures for crop yield prediction and heterogeneous agricultural landscape mapping using UAV and satellite imagery.

Speaker Biography

Paheding is an associate editor of the Springer journal Signal, Image, and Video Processing, ASPRS Journal Photogrammetric Engineering & Remote Sensing, and serves as a guest editor/reviewer for a number of reputed journals. He has advised students at undergraduate, M.S., and Ph.D. levels, and authored/coauthored close to 100 research articles.