Category: Research

In Print

Raymond ShawRaymond Shaw (Physics/EPSSI) is the principal investigator on a project that has received a $185,703 research and development grant from the National Science Foundation (NSF). Will Cantrell (Physics) is Co-PI on the project “Laboratory Studies of the Effect of Turbulence on Aerosol-Cloud Interactions.”
This is the first year of a possible three-year project potentially totaling $719,035.

Yap’s Review Article Top 10 in 2017

Yoke Kin Yap in a lab with lab coat and safety glassesFrontier Review article published by Yoke Khin Yap was one of the Top 10 most downloaded articles published in Environmental Science: Nano in 2017 and was included in a feature collection showcasing the journal’s Most Downloaded Articles. This article, entitled “Water Purification: Oil-water Separation by Nanotechnology and Environmental Concerns” was co-authored by Chee Huei Lee, Bishnu Tiwari, and Dongyan Zhang.

Environmental Science: Nano is a high-impact journal published by the Royal Society of Chemistry. This journal is designated to publish articles on nanomaterial applications and interactions with environmental and biological systems.

Do the Room Temp Melt: Physics of Soft Materials

Screen Shot 2018-01-08 at 4.59.40 PMSalt-doped block polymers and ionic liquids—it’s a thermodynamic party. Better physics simulations crank up the possibilities for new composite materials.

Issei Nakamura is a theoretical physicist bringing a reality check to soft materials development. Specifically, he models the complex interactions of ionic liquids and block polymers, which together create salt-doped block polymers.

The ionic liquid squishes in between all the loops and strands of the block polymer. Because an ionic liquid can assemble a block polymer into millions of structures with wide-ranging properties, the possibilities are nearly endless. The composite materials show promise for battery electrodes, fuel cell membranes, electrochemical sensors and even artificial muscles.

The catch is that the materials have to get their thermodynamic groove figured out. Right now, untwining the conditions and properties of all those possible structures is like learning to tango blindfolded. Researchers and engineers can go through the motions, but understanding the sequence, the steps—and why—requires a new way to look at the system. And that’s where Nakamura steps in. Read the full story in Unscripted.

Carn’s Work Among NASA Highlights

Screen Shot 2018-01-02 at 4.19.36 PMIn reviewing the year’s highlights, NASA mentioned a study led by Simon Carn (GMES) that shared out the world’s first truly global inventory of volcanic sulfur dioxide emissions.

Using data from the Dutch-Finnish Ozone Monitoring Instrument on NASA’s Earth Observing System Aura satellite launched in 2004, Carn and his team compiled emissions data from 2005 to 2015 to produce annual estimates for each of 91 presently emitting volcanoes worldwide.

The dataset will help refine climate and atmospheric chemistry models and provide more insight into human and environmental health risks. Read more and watch a video on NASA’s 2017 highlights and learn about volcano breath in the Michigan Tech news story about Carn’s research.

Electron Probe Microanalysis of Merelaniite, a Newly Discovered Mineral

Screen Shot 2018-01-08 at 12.45.02 PMMicroanalytical and metrology instrumentation supplier CAMECA held an international competition soliciting images to consider for its 2018 calendar. CAMECA selected a composite image of the new mineral merelaniite by John Jaszczak (Physics) and colleague John Spratt (Natural History Museum, London) as one of the winners, and appears as the highlight for the January 2019 calendar pages.

Top Ten: Pierre Auger Observatory

Image by Tobias Winchen
Image by Tobias Winchen

The Pierre Auger Observatory, of which David Nitz and Brian Fick are both a part, received international recognition as one of the Top Ten Physics World 2017 Breakthroughs of the Year.

In an article published in Science, the Pierre Auger Collaboration has definitively answered the question of whether cosmic particles from outside the Milky Way Galaxy.

The article, titled “Observation of a large-scale anisotropy in the arrival directions of cosmic
rays above 8 × 1018 eV”, notes that studying the distribution of the cosmic ray arrival directions is the first step in determining where extragalactic particles originate. You can read more in the Institute of Physics announcement and the Michigan Tech news story.