Month: November 2019

Industrial Ecology

Photo of Shaelyn taken by Daniel Prada (daprada@mtu.edu).

 

 

This is a guest post by Shaelyn Koleber, who is an environmental engineering undergraduate student at Michigan Tech. She can be reached at sjkolebe@mtu.edu

 

Shaelyn took the photos included in her blog post.

 

 

 

Nature is full of self-sustaining ecosystems; there is a constant recycling of resources. There are complementary functions within nature and the environment is able to completely support itself without outside assistance. For example, trees absorb carbon dioxide and give off oxygen, while animals take in oxygen and give off carbon dioxide—a seemingly perfect complimentary cycle. Whether a plant is eaten by an animal or it dies naturally and decomposes on the forest floor, it is still supporting the ecosystem. Whatever nature produces eventually reaches the end of its life and will be consumed back into the ecosystem. A fallen tree limb, a dead animal, or an uneaten fruit or plant that has fallen to the floor are all absorbed and recycled back as useful forms to support the ecosystem. There is no waste produced from environmental processes and the ecosystem is a closed-loop of resources. This same concept can be applied in buildings and manufacturing where the waste produced from these processes can be used to support the ongoing production. Industrial ecology is a sustainability concept to improve the environmental management of industrial processes. Companies can keep a record of materials throughout a product’s life. There are many subcategories of industrial ecology that are used as analyzation and evaluation techniques to ultimately reduce the impact on the environment, such as: material flow analysis (MFA), life-cycle analysis (LCA), and input-output analyzation. Industrial ecology is an emerging concept that works to mimic the self-sustaining cycle of nature.

Introducing the ecological aspect to industry puts a generalized focus on environmental impact. Industrial ecology is a strategic guideline to use fewer resources while also finding a new purpose for exhausted materials and waste. This does not have to occur within one facility. Different businesses could work together to create networked, ecological industries: waste can be seen as a resource. The saying, “one man’s trash is another man’s treasure,” is demonstrated through the concept of ‘industry partnership.’ The by-product from one industrial process can be used as the input for a separate entity. For example, a coal-firing power plant has a lot of excess heat that can be distributed to a nearby community. This would reduce the energy and resources needed to provide heat services to the town, thus providing environmental and economic benefits. This could only occur with the cooperation of multiple companies independently. The transportation of these materials would have to be a short distance for the net environmental impact to be positive. This idea would have tobe mutually adopted for it to be effective, which could be seen in future years as more industries become conscious of their carbon footprint.

 

Industrial ecology is also seen in the emerging concept of cogeneration. Cogeneration, also known as combined heat and power (CHP), is when a heat engine is used to generate electricity and heat at the same time. Similar to the previously mentioned example, during the production of electricity, the heat can be harnessed and put to use instead of going to waste. This directly views the heat waste as a source and creates a concept of dual-purpose. Rather than the heat being seen as waste, it is seen as another useful product of the process. Smaller-scale industrial ecology concepts can be seen in the construction of homes or commercial buildings. Current construction techniques and technological resources build each utility with separate input needs and waste disposal. Most housing and commercial buildings do not have any industrial ecology, currently. People who plan on living in a house for an extended period of time or have a desire to live sustainably are more prone to implement advanced technologies. Instead of using an air-source air conditioner, a ground source heat pump can be used as a closed-loop system. These systems pump water from the ground where the temperature is constant year-round. While air-source heat pumps are less expensive and easier to install, ground-source pumps are much more efficient and sustainable. The ground-source pumps are buried pipes that loop around a three-to-six-foot-deep trench. This system is a constant exchange of heat with the ground and can heat or cool a home. Diagrams and explanations of the different heating systems can be found on https://smarterhouse.org/heating-systems/types-heating-systems. It takes less energy to simply move heat around than it is to generate heat; therefore, the ground-source pump does not consume a lot of energy. Since the ground-source heat pumps are more efficient, they are also more cost effective. A consumer that installs this system and plans on living in a home for a long time will see a return on their investment. This is just one example of many technologies/designs that exist as readily-available sustainable systems.

Industrial ecology is a concept that must be practiced by all companies and manufacturers; it must also be well-understood by the general public in order to be fully adopted and implemented into the function of society. Since our society relies heavily on industrial processes, we cannot simply shut them down. However, we can no longer standby and knowingly accept the pollution that companies create through their industrial processes. While it is not reasonable to shut down industrial processes completely, we must keep these companies responsible for the waste and pollution they create. A partial reinvention of industrial processes into industrial ecology will reduce the environmental impact significantly. Without the public’s understanding and demand for such changes, there will be no urgency to place official regulations and therefore create a zero-pollution global industry. This foreseen change will not come easily or naturally; it needs to be talked about and broadcasted on media to mass-educate the public. With a widely supported concept, the engineers, scientists, and policy makers can work together to put the ideas into action. Industrial ecology allows humans to increase their efficient use of ecosystems by mimicking what nature already does. The implementation of this concept will only come with the mutual support from companies, the government, the people, and environmental conservationists. If we continue to move forward with these concepts, the earth can thrive for many eons in our future.

 

 

Your Role in Progressing Toward a Soft-Energy Society

 

Photo by Meghal Janarda

 

This is a guest blog post from Zoe Reep, who is an undergraduate mathematics major at Michigan Tech. Zoe can be reached at zkreep@mtu.edu

 

As our society has grown in population, technology, and abilities, so has its need for energy. And as our need for energy has grown, we have been forced to step outside of early methods of capturing and extracting this energy. Over time, society has shifted from reliance on muscular and biomass sources such as animal labor and firewood in the 15th century to a reliance on fossil fuels such as coal, oil, and natural gas in the late 20th century (Evolution of Energy Sources).

 

Figure 1: Graph representing the evolution of energy sources across periods of time (Evolution of Energy Sources).

In the late 1900s, influential writer and scientist Amory Lovins took a critical look at the future of our energy sector in his essay “Energy Strategy: The Road Not Taken?.” He proposed that there are two ways in which society can proceed: the hard path, society’s current path characterized by intense fossil fuel consumption and lack of regard to the environmental effects of such consumption; and the soft path, the path that Lovins believed to be the better alternative characterized by renewable energy and the commitment to energy conservation and efficiency.

Those in support of the hard path argue that fossil fuels and nuclear energy alone can sustain our ever-growing population, with its ever-growing desire for energy, if we simply alter our extraction, conversion, distribution, and usage methods to be more efficient. Proponents of the hard path believe that society should focus on providing incentives, such as tax breaks and subsidies, for fossil fuel companies to encourage the exploration and extraction of coal, uranium, and petroleum. Following the decline of the availability of fossil fuels, these hard-pathers support a shift to nuclear power. Typically, those in support of the hard path envision a future of expensive, centralized systems (Newton).

In contrast, those in support of the soft path hold the belief that a reliance on solely fossil fuels is not only unsustainable in the long run, but dangerous. They believe that creating and sustaining large, concentrated facilities for power production enables powerful companies to dictate energy’s place in society and turns energy into a socioeconomic issue. Instead of these centralized systems, proponents of the soft path favor more local energy retrieval methods, such as solar panels on buildings or the use of wind turbines on properties. Additionally, soft-pathers would like to see society slowly transition from a heavy reliance on fossil fuels to a more dispersed reliance on renewable energy sources such as hydro, geothermal, solar, and wind power (Newton).

Lovins views sparked a time of controversy, but also brought up an important issue: which direction is the direction that we need to move in order to ensure that our successors have the same abilities to live full and meaningful lives as we do?

We’ve reached a point where it is difficult to argue that there isn’t something wrong with our current energy industry. [Check out https://ourworldindata.org/fossil-fuels for a look at the increase in fossil fuel consumption. Think our current methods can keep up with the ever-growing demand for energy?] Scientists and researchers have been presenting more and more evidence that our current path is unsustainable and that we might even reap the irreversible consequences of our procrastination and selfish desires in our lifetime. It is beginning to seem that the majority of people recognize the correlation between the dependence on fossil fuels and Earth’s degrading environment and atmospheric conditions , so what’s stopping us from converting to a more sustainable alternative?

We have grown increasingly dependent on energy and the comforts and commodities it supplies to us. We believe that others will find an answer for us, and that the answer will allow us to continue our life of ease. We hold the assumption that our own individual efforts will not produce change, since we are merely a single ant in the midst of a ginormous colony.

I tested a thought that I had on my Energy and Society class. I wanted to see if, when provided the education of why change was important and the means of producing that change, my peers would change small areas of their life that they had grown up comfortable with to benefit the world around them.

We had spent the previous class walking around campus and discussing areas that we felt could be improved, through methods such as user awareness or the implementation of more efficient systems,  to lessen energy consumption. The general consensus seemed to be that there were many aspects of our college life that, with a little change, could lower our energy consumption significantly and if only people knew about these areas, or acted on these areas, we would be in a much better position, energy-speaking.

I used a topic that I knew would strike controversy and that my class would be resistant to: food, and the environmental effects of the current animal agriculture industry – and our consumption of the proteins stemming from it.

Before I began, I asked my class whether they were vegetarian. This elicited several skeptical looks and maybe one or two hesitant “I once was…” or “I tried at one point…” I then provided them with some basic education on the negative effects of the animal agriculture industry through short videos. These videos walked my class through the water, land, and fuel consumption required to create even a single patty and informed them of the emissions and other land-and-water-degradation that results from a mass animal agriculture system.

Following the videos, I asked a very straightforward question: “Who is going to become vegetarian?” When that didn’t receive a response, I decided to cut them a little slack: “Who is going to change their diet?” That received a couple grunts.

I then posed one final question, which is what I want to leave you with today: if you’re not going to make the change, even after being educated about the issue and being provided means to pursue this lifestyle change (even if it is more expensive than the alternative, “normal” route), then what makes you think that anybody else will?

Stop believing that change will occur only when everyone buys into the change; start the change, and help people buy into it. Your actions are important and do create discussion. They have the potential to incite change. If you agree that this energy path we are taking is in fact unsustainable and quite dangerous to rely on, then step up, alter your lifestyle (yes, you might need to give up some of your comforts), and encourage others to do the same. And if you won’t do it for yourself, do it for the generations to come.

Zoe Reep.

 

 

On Industrial Ecology

This post is a guest post from a student in SS3815 Energy and Society who wishes to remain anonymous.

 

Most of us are somewhat aware of industrial practices along with a high school level understanding of ecology, but what about their interconnection? Can two completely different topics combine for a new concept or understanding? And how does it relate to sustainability?

“Industrial ecology is the study of industrial systems aimed at identifying and implementing strategies that reduce their environmental impact. Industries, such as manufacturing and energy plants, extract raw materials and natural resources from the earth and transform them into products and services that meet the demands of the population” (study.com). Industrial ecology works in a way similar to that of a workplace or school sustainability initiative for recycling or net zero waste, but to a deeper and grander scale. A forest’s ecosystem may give tree saplings to mammals and insects, but the surviving saplings grow big and strong. These trees provide cover from the elements, as well as shelter for other species. They also act as carbon sinks, providing clean oxygen. This cycle of environmental sustainability is what industrial ecologists are looking to achieve.

When Eagle Mine was first proposed to the Marquette area, there was severe backlash from the community regarding its environmental impact on the nearby Salmon River. Their skepticism was understandable, a simple Google Map satellite search will show you the nearby retention ponds of Empire Mine, among others, with a remarkable color of orange. In case you didn’t already know this: water is not orange in its natural state. Local fishermen opposed the mine on the grounds of mining’s notorious mark on nearby bodies of water and land, so proper measures were put in place.

 

Eagle Mine Fly Over (Links to an external site.)

 

Firstly, the mine is not open-face, it is an underground operation. This limits the dust exposure compared to open-face or mountaintop mining, whose presence lasts long after operations cease. Second, truck loading takes place indoors, further reducing the potential dust travel. Trucks and boots have designated pathways for travel to prevent exposure off the site. There is even a water treatment center inputting from the site and outputting into the river. One of the most interesting aspects of exposure prevention is their handling of snow and rainfall. The entire site is concave in so all liquids pool to the central holding ponds. This site is a prime example of industrial ecology because of every aspect to protect the local ecosystem and reduce its overall impact. On top of all this, Eagle Mine plans on returning the site to its former natural state when all is said and done.

 

Modern Mining – How Eagle Mine produces nickel and copper (Links to an external site.)

 

When looking at the product of Eagle Mine, said minerals are made into a wide array of products and parts, which in turn can return to the site via phone or truck.

In my Population & Environment course with Dr. Winkler, we ran a website test determining how many earths would be required to live if everyone lived like the test taker. I ended up receiving a score of about 1.5 earths, but I wanted to test some options. The life habit that created the biggest jump was the amount of trash one produces. By adding a few pounds to my weekly trash output, my earths jumped up to almost 3 whole earths. Industrial ecology is an important term to understand because it is a relatively new concept with future consequences. Industrial waste is a topic that needs to be addressed because the reduction of overall waste and waste streams is one of the most significant ways to reduce its environmental impact. Ever seen a loaded truck carrying brand new vehicles down the highway? Each vehicle is wrapped in single-use plastic that is battered by the wind, and some even falls off. When the vehicles reach their final destination, this plastic is stripped off and the car is stored elsewhere. How do I put this lightly…do we really need to continue to manufacture single use plastics? Obviously, there are exceptions to this, particularly medical equipment, but even then, we can invest in alternate materials. Ford Motor Company’s most recent sustainability report details its net zero waste initiative, most notably its near zero landfill output in the United States at most sites. An increasing number of companies are moving towards zero landfill waste, which is incredibly impressive considering the amount of office waste that can accrue.

It can be said that industrial ecology is similar to life cycle analysis, which is an assessment of environmental impacts associated with all the stages of a product’s life from raw material extraction through materials processing, manufacturing, distribution, use, repair and maintenance, and disposal or recycling. Life Cycle Assessments look into everything that occurs cradle-to-grave when it comes to products. In other words, from pre-manufacturing to disposal. This can be inversely related to industrial ecology because the industry is the cause while the product carries the effect. Think of how a Red Solo Cup takes over 400 years to fully decompose, how can a company change the material of the famous Red Solo Cup so it can decompose in 10 years? How does the Red Solo Cup manufacturer justify making products that will last centuries into the future when none of the current generation will be alive to experience it? I would certainly hope there are environmental policies in place to counter overdue decomposition in the future, but what can a company do right now to counter? Gone are the days of simply throwing trash away- out of sight, out of mind– and here are the days of sustainability. I’d find peace in working for a company with such strong devotion to internal standards, and the standards of the surrounding environment.

This term deserves to be normalized in order to become a pillar in sustainability efforts and studies. I think that industrial ecology can be a catalyst for severe societal change. It’s known that work environment and cultures influence our own environment and culture at home, so sweeping ecological successes could have trickle-down effects.

 

Off-Grid Energy

This guest post is provided by Alannah, who is a Sustainability Science and Society undergraduate major at Michigan Tech. She can be reached at amwoodri@mtu.edu

 

Photo by Kevin Stace

 

Hi, I am Alannah Woodring a third year Sustainability Science and Society undergrad. Off grid energy production is intertwined with sustainability. These are systems that individuals use to generate their own power removing the need for energy companies. This gives individuals independence, no longer needing to be connected to the energy grid. Most commonly through solar panels residents and communities can create their own micro grid.

Since I was in Middle School, I have considered living in an off grid in a tiny house, earth ship, converted shipping container or other forms of alternative housing. The main reason for this is to reduce my footprint and my overall individual consumption. Currently, in my free time I draw up blueprints for tiny houses and modular homes. My first blueprint started in 2014 and I keep sketching up new ideas. One element all these living spaces have in common is an off-grid energy system. To accomplish this, I would have solar panels with battery reserves create my own energy system. There would also be the ability to connect to the grid if needed. Having the on and off grid flexibility is a necessity when having a mobile living situation. Beyond my desire for an off-grid system there are many possibilities to aid in energy issues within the United States and help developing countries who lack access to energy.

Photo taken in Windsor, California by Kirsten Dirksen. “Agile villages for fire victims as templates to fix CA housing?”faircompaines.com. October 20, 2019.

 

Off grid energy systems could be applied to places that have a failing energy infrastructure. In California during the beginning of October 2019 widespread organized blackouts occurred by Pacific Gas & Energy (PG&E). This was in hopes to reduce the possibility of widespread fires during a few very windy days.

This blackout affected more than 500,000 people. With the usage of micro grid systems people who would not have been affected by strong winds could have left their power on but since they are all part of a large grid majority of people got their electricity shut off. During the 2017 wildfire PG&E was to blame resulting with an 11-billion-dollar settlement that was reached this September. Shutting off the electricity in October was to prevent a wildfire to the magnitude that was seen in 2017. As conditions worsen in California due to climate change the current energy infrastructure is showing a growing number of problems.

Many California residents cannot afford to rebuild after the fire, and it is estimated that 3,300 people decided not to move back after the 2017 fire. For others who decided to move back they are choosing to live in 480 square feet homes renting for $950. Community members are coming together to get temporary housing permits for those effected from the wildfire. Through the usage of a micro grid system these small homes could have not been affected by blackouts and this would reduce the chance for wildfire if their energy infrastructure was to be built underground. Having power lines above ground does not have to be the status quo but it is the system that the United States is used to having. Coming up with solutions using off grid energy systems to combat rising issues from climate change should be considered widely as climate change is predicted to worsen conditions.

Another potential for off grid energy systems is in counties that do not have energy infrastructure such as power lines already in place. It can take many years for widespread grids to be established in rural and remote areas. By using off grid energy systems rural communities who would have had to wait many years for access would be able to produce energy in a matter of months. This adds self-sufficiency within energy production for developing countries who often lack the complete infrastructure needed to maintain systems.

Furthermore, here is a ted talk that outlines the expansive sustainable potential of off grid energy systems. https://www.youtube.com/watch?v=20adDr7Felw

There are many companies like Powerhive that are helping people in rural areas who cannot afford the initial cost of power lines to be connected to their communities. They instead install solar panels in rural areas to connect communities that would not have access to electricity otherwise. Electricity is a necessity for life within our globalized world. Rural areas surfer the most from inequalities and access to electricity can help bridge the gap. When I was in high school deciding what I wanted to major I knew proving energy to remote and rural areas was always a possibility. I hope that I can work within off-grid energy systems sometime in my life.

 

Source: Powerhive, Powerhive: Resilient Energy Infrastructure for Off-Grid Communities. August 10, 2016

 

 

When having an off-grid energy system individual become more aware of their energy consumption. They look at the peak times they consume energy. With having this system, they can avoid peak energy price changes that electric companies charge.

In Tyalgum, Australia they are a community of a little more than 300 members. They are choosing to have their own off grid energy system to have independence from energy suppliers and go carbon neutral. In Australia much of their energy mix comes from fossil fuels as they have large reserves in their country. The carbon lock in cycle can be observed in Australia. Members of the Tyalgum community feel Australia does not have a progressive enough stance on incorporating renewables, so they have decided to take matters into their own hands.

Reasons for switching to off grid energy systems can be ranging from reducing natural disasters amplified from climate change or just wanting to reduce carbon emissions. No matter the reason for wanting off-grid systems they can help mitigate climate change issues while providing energy justice to people who previously had none. Benefits come from small scale energy generation that many would not consider since off-grid is not a common practice. With more knowledge surrounding off-grid energy individuals can think of energy as a public good. Fossil fuels are not sustainable and rethinking the current energy infrastructure can create a new sustainable blueprint for the future.

Managing Split Incentives as a Better Way to be Energy Efficient While Renting?

 

Brendan Beecham is an undergraduate Computer Science major at Michigan Tech. He can be reached at blbeecha@mtu.edu.

Understanding the Need

In the present-day variable economy, split incentives could be used as a method of lowering the overall energy bill for a renting tenant. By sharing the cost of energy between the landlord and the tenant, the difficulty that arises with paying for high-cost energy services is mitigated. This in turn allows the renter to use the saved money to pay for other goods and services and inspires sustainable living through spending less on utilities.

 

Source: nucherenonagel.com

 

The power of utilizing split incentives comes from the motivation from the landlord and tenant to be energy efficient. If the landlord accepts one lump sum fee from the tenant as a substitute for the tenant paying the utility themselves, they have much less reason to be mindful of how much energy they use. On the other hand, if a tenant pays their own electric bill every month themselves, the landlord might not see it as worth their money to install energy efficient lights and appliances. This is where split incentives shine.

When each party in the landlord/tenant relationship is responsible for their own half of the electric bill, there is much more pressure to be energy efficient. This is present in many more cases than just rental housing, but for simplicity I will focus on just the landlord/tenant relationship instead of hotels or big businesses.

 

Affordability For Those That Need It

Split incentives are especially important when discussing energy poverty. This is where lower income renters will end up allocating significantly more of their household income to energy bills than other renters. In this case, split incentives can cripple the financial stability of that renter and affect their quality of life. Additionally, this renter’s landlord will most likely be affected by the instability of the renter’s financial situation, which could lead to possible missed rent payments and cause for both parties to be in an unstable financial relationship. Implementing split incentives effectively can help both the renter and the landlord.

Energy poverty is an issue that arises from the infrastructure and behavior of the energy industry as it stands today. This is a huge issue. Until people are able to afford the energy that they need to take part in society, the thought of living efficiently is much less a choice for some than it is a requirement. There is hope, however, as the idea of split incentives is a versatile one and can help to push forward renewable energy technology.

 

Source: thebalance.com

 

Creating A Better Transition For Renewable Energy

Split incentives could be managed in ways that create energy poverty solutions, but they could also be helpful in mitigating the cost of installing renewable energy solutions like solar panels. Where many cite the initial sunk cost of installing solar panels as the number one reason for never transitioning to using renewable energy solutions, a program that effectively splits incentives could mean a lessened financial impact on each one of the parties involved, the renter and the landlord. While no tenant wants to pay for their landlord to install solar panels out of their own pockets, a cooperative action as well as the promise of lower energy costs in the future could cast a much more appealing light on the transition. In fact, this is not unlike the benefits that come from a government incentive program, one that gives tax breaks to parties who install renewables or who have a portion of their power grid being powered by renewables.

 

Sharing the Cost to Save Energy

Split incentives may mean that landlords have no reason to invest in energy efficiency or renewable energy, because they don’t see the benefits of lower utility bills themselves. By acknowledging and effectively managing split incentives, the solutions for reducing energy poverty and the transition to renewable energy can be streamlined. Like with most improvements to infrastructure systems, it is the programs that are put in place to reduce sunk costs and reduce risk on one party that will push forward for the most change. No landlord will front the cost of installing solar panels if they know there is no incentive to do so. In most private rental situations, there will need to be a push to get an incentive.

 

Source: energynews.us

 

The cost of renewable energy installation makes it a very unrealistic option for most tenants, even those in long term rentals. Even with the price of solar panels dropping as the market expands, for many tenants, the cost of installations are still too high, and the split incentive of renting (when they might not directly benefit from the reduction in utility expenses) is a huge barrier. While renting is an increasing trend in the housing market, tenants won’t want to put money into rental housing, since they don’t own it and won’t see the benefits from the housing value. Most renters are less financially well off that their landlords, so spending their income to install solar panels for the benefit of the landlord is not likely.

 

Conclusion

Split incentives can be managed in ways that have the potential to improve quite a few factors that all relate to energy and the way it’s used in rental housing. Dividing the costs between the landlord and the tenant could provide a stronger reason to be more energy efficient for both parties. Most importantly, incorporating  sustainability into the way we live is quite a daunting task, especially if money is an issue. So to share the burden with others is possibly the biggest leap to see the biggest benefits. Whether it is minimizing the energy footprint that we are leaving, or attempting to save money to be able to afford the everyday essentials in life, managing or leveraging split incentives to provide maximum benefits and incentives to both landlords and tenants is a smart first step.