Category: Graduate Students

Fridays with Fuhrmann: Engineering + Management

FWF_image_1_20160325The last couple of weeks I have written about entrepreneurship, management, and leadership in engineering and engineering education. I have a few more thoughts about this topic, and next week I’ll move on to something else.

Last week I said that I support education in entrepreneurship and innovation for ECE students, but that I don’t have much to offer in that arena so I’ll have to leave it up to someone else. I also made the case for an education that emphasizes engineering fundamentals first, and the other more human-centered activity later. I stand by those remarks, although I will admit there is plenty of room for debate. This past weekend I heard a lot of that debate at the annual meeting of the Electrical and Computer Engineering Department Heads Association, or ECEDHA (yes, there really is such a group.) A lot of universities and engineering schools are introducing entrepreneurship into the curriculum, so Michigan Tech is not alone in this venture and we can probably learn a lot from our peers.

My first point will be to encourage 5-year programs for students that really want to do it all. The standard undergraduate engineering program is four years, and at Michigan Tech that means 128 student credit hours – 32 per year, 16 per semester. The pressure is on to cram as much stuff as we possibly can in those 128 credit hours. We certainly contribute to that problem by our insistence on rigorous EE and CpE programs that have a lot of courses required by name and number. I still maintain this is the right approach, since the best time to learn that material is when one are 18 to 22 years old, and we have a whole lifetime to keep learning about relationships with other people, how organizations work, and how to turn ideas into money. For those students that want to combine engineering with business, then I think the best approach is to admit that four years is just not enough, and the investment of another year of early adult life in education may be called for. This creates some breathing room, and also an opening to pursue an additional degree. This degree could be a second undergraduate degree such as a BS in Engineering Management, or an advanced technical degree such as our MS in Electrical Engineering or MS in Computer Engineering. At Michigan Tech we have recently introduced the “accelerated” MS program, where students can double-count 6 credits toward both a BS and an MS degree, thereby getting both the BS and MS in 152 total credits instead of 158 (128+30). Not that many students are taking advantage of this opportunity to date, but that is mostly the result of our not doing enough to promote the program. That is certainly on my to-do list.

For students who want to go “all in” for engineering management and leadership, I strongly recommend a rigorous undergraduate engineering education first, working a few years as an engineer in a reputable organization, and then returning to school either full-time or part-time to earn an MBA. The Engineering + MBA combination is a very hot ticket and students who can get all the way through both sides will find themselves very well positioned for a lucrative career. What I don’t really recommend is a stand-alone undergraduate program in engineering management. Michigan Tech has one of these programs, and so I’m probably going to get in trouble for writing these words. I’m just not a big fan. I believe that the first step toward engineering management is engineering, which means knowing what the field is and actually having work experience in it. I will bolster this argument by pointing out that undergraduate engineering majors are very well-represented among Fortune 500 CEOs; see Insead Knowledge blog. Again, this is one of these areas where there is room for debate, so if any of my colleagues want to take issue with my remarks I will be happy to give them room in this column to do so.

Finally, let me mention the hot-button issue of General Education, or “Gen Ed” as it is often called. This refers to the set of courses that are included in the curriculum to ensure a well-rounded education of all the students. In many institutions the Gen Ed program refers to the requirements that are common to all students, and this is the case at Michigan Tech. Now I am all for a well-rounded education, and believe that all students should have a meaningful learning experience in the arts, humanities, and social sciences. This helps to promote good critical thinking and communication skills. Like a lot of electrical engineers, I am an amateur musician and that has made a huge difference for me personally in giving me a broad outlook on life, not to mention expanding my circle of friends. Where I have problems with Gen Ed programs is that those in charge of setting requirements often give short shrift to business-related courses, which really can be a part of a broad education and at the same time create some room in the 4-year engineering programs for those with interests in business, economics, and accounting. So, I will continue pushing for a “broader” interpretation of what Gen Ed means, and hopefully our ECE students will benefit in the long term.

Have a great weekend. I’ll be back next week with some thoughts stirred up by the recent ECEDHA meeting.

– Dan

Daniel R. Fuhrmann
Dave House Professor and Chair
Department of Electrical and Computer Engineering
Michigan Technological University


Fridays with Fuhrmann: Engineering Education and Entrepreneurship

FWF_image_20160318Last week I wrote about my trip to the San Francisco and Bay Area and the culture of high-tech innovation that is flourishing there. Today I will follow up with a few random thoughts about entrepreneurship and the role that universities play in this world.

There is no doubt that entrepreneurship and start-up companies are huge in Silicon Valley. There is a whole eco-system of universities (most notably Stanford), venture capital, incubators, and a wealth of engineering talent to keep the Valley humming. Everybody and his brother has some venture going, in fact you’re nobody if you’re not trying to create some new business. It’s as if, in southern California, everyone is out trying to hawk their amazing screenplay, and in northern California, everyone has an idea for an Internet start-up that they will pitch to anyone who will listen.  Everyone is aware of the meteoric rise of Apple, Google, and Facebook – Steve Jobs has become a cultural icon – and the prevailing sentiment is, there is no good reason that I can’t do the same thing and become a bazillionaire with my fantastic disruptive technology.

This is sort of an aside, but this whole culture of entrepreneurship is brilliantly depicted in the hilarious HBO series “Silicon Valley”, about to go into its third season. The show follows a group of engineering misfits (aren’t we all) with a great algorithm for  video coding, all living and working under one roof, as they navigate the choppy waters of venture capitalists, big-time competitors, trade shows, and misguided management. I highly recommend it, although it is HBO so be prepared for the usual cable standards of adult language and themes. I have had a number of good conversations in California about the show, and everyone has an opinion. Many will say “it’s nothing like that!” but just as many will nod knowingly and say “it’s exactly like that.”

But back to matters at hand. The culture of entrepreneurship which has taken California by storm and has become part of the national conversation, is having a big impact on engineering programs, especially in electrical engineering and computer science. It is  now clear that starting a company is now one of the options available to young engineers, right alongside getting a job at an established company or going to graduate school. The question is, what can we do, and what should we do, as educators to prepare students for this brave new world?

Michigan Tech is addressing this question head-on. We have established a Center for Entrepreneurship and Innovation, precisely to help students learn about project management, innovation, entrepreneurship, and business practices in the high-tech environment. Students from all different disciplines have the opportunity to participate in the Center, and indeed it played a role in the “Silicon Valley Experience” that I described last week. The Center is getting a lot of attention from philanthropically-minded alumni, and rightly so. I expect it to be a big success, and a big draw for new students coming to Michigan Tech.

That being said, my personal answer to what we should be doing for our students is a little bit different. I have to admit, straight up, that I do not know that world very well (OK, at all) and therefore I really can’t be of much help. I fully support my colleagues and our good friends who want to support this activity, but for the most part they are going to have to do it without me. Maybe someday I’ll have a great idea and try to start a business, but it hasn’t happened yet, and I shouldn’t be telling students how to do it until I do. (That’s not entirely true – for a while I owned a business in Missouri called “Tropical Entertainment” that was the business front for a salsa band that I played in. But that’s a story for another column.) My skills are much better put to use helping students learn the fundamentals of electrical engineering, and supporting my faculty so that we can be the best ECE Department that we know how to being terms of education and research.

The other point I have to make about going “all in” with entrepreneurship is that, as exciting as it sounds, only a small fraction of our students are ever going to give it a shot. The vast majority of our students are going to work for an established company as an engineer, and they are going to be very good at it.  The 300+ companies that come to campus to hire our students are well aware of this.  Taking this a step further, I’m not going to throw all those corporate recruiters under the bus by telling them that our main goal is to train students to start their own businesses. People study engineering for all sorts of reasons. Our mission should be to prepare students in electrical and computer engineering, so that they can go out into the world, practice their trade, and make a decent living. What they do after that is up to them. Starting a business is one of the options, to be sure, but the truth is that most of them will practice their engineering by working for someone else, and that’s perfectly OK with me.

My last point today has to do with the issue of when is the best time to get into the entrepreneurial game. As I stated above, I am supportive of my colleagues who want to bring that down into undergraduate educational programs. Where I draw the line, however, is in substituting business and entrepreneurship for hard-core engineering at the undergraduate level. There is a time and a place for everything, and let’s face it, the best time to learn science, math, and engineering is when you are young. Young brains are just ready for it. Those same brains may not be fully developed for mature social interactions, but that’s OK, there is time enough for that later.  Business, management, leadership, entrepreneurship – these are domains that require knowledge of working with people as well as working with things, and for many that knowledge comes with a few extra years. My advice to students is, before you get stars in your eyes, LEARN ENGINEERING FIRST. It will serve you well later, no matter what you do. As a case in point, I look at all of our very – and I mean very – successful ECE alumni who have had fabulous careers as business leaders and entrepreneurships, and are promoting entrepreneurship on our campus so heavily. Ask them what they were doing when they were 22 years old, and the answer is uniformly the same – they were working as engineers.

Am I the only one who sees the irony in this situation?  Engineering education and engineering practice at a young age is the best launch pad for anything our ambitious students want to accomplish in life.

So again, I fully support my colleagues who seek to bring exposure to entrepreneurship into our undergraduate curriculum; I think it’s great and very forward-looking. For my part, I’m going to keep doing what I do best – building educational programs for students that I fully expect to be among the very best electrical and computer engineers in the country.

– Dan

Daniel R. Fuhrmann
Dave House Professor and Chair
Department of Electrical and Computer Engineering
Michigan Technological University


ECE announces MasterpiECE Mania winners

MasterpiECE Mania first place team Physical Spectrum Analyzer by Matthew Linenfelser, Jerry Sommerfeld, Alex Herbst, and Matt Miller
MasterpiECE Mania first place project Physical Spectrum Analyzer by Matthew Linenfelser, Jerry Sommerfeld, Alex Herbst, and Matt Miller

There was electricity in the air last night at the MasterpiECE Mania student design competition hosted by the Department of Electrical and Computer Engineering and IEEE. 16 teams competed in the annual event with prizes going to the top three teams. Actually four, as the judges concluded a tie for third.

This year’s event was sponsored by Whirlpool Corporation with a generous gift of $2,000 to help support cash prizes, partial project supply reimbursal, event promotion, and a pasta buffet prior to the evening’s demonstrations to thank all the team members for their time and effort in their creative innovations.

Here are the results:

  • 1st place, $500: Physical Spectrum Analyzer by Matthew Linenfelser, Jerry Sommerfeld, Alex Herbst, and Matt Miller
  • 2nd place, $300: Automatic Resistor Sorter by Peter Gorecki
  • 3rd place, $200 (ea): Midi Orchestra by Joe Halford; Internet Enabled LED Controller by Alex Simon and Pierce Jensen
  • Honorable mention: Arduino Uno Controlled Quadcopter by Cameron Burke;  Rc Aircraft by Josh Gobrogge

A few details regarding the winning project: A spectrum analyzer is a device for analyzing a system of oscillations, especially sound, into its separate components. The “Winter Spectrum” uses small polystyrene particles and powerful fans to visualize an audio signal. Using a microprocessor (TI Tiva C Launchpad) the team was able to run a Fast Fourier Transform (FFT) algorithm on an incoming line level audio signal. This separated the audio frequencies into “bins” which integer value represents the intensity of the certain frequency. Pulse width modulated (PWM) signals are fed to the fans under the acrylic enclosure. The beads then rise to the level that best represents the FFT frequency bin average.

MasterpiECE Mania began in 2009 with the goal of inciting creativity throughout the Michigan Tech community and fostering an appreciation for the ‘DIY’ aspect of modern electronics. Although the yearly MasterpiECE Mania competition is hosted by the Michigan Tech ECE department, it is open to all Michigan Tech Students regardless of major. This intra-disciplinary hack-a-thon competition challenges student to develop and build an electrical-based project that displays their skill and ingenuity.


Fridays with Fuhrmann: The Silicon Valley Experience

SiValley-Tour-2014-1311131I am writing today while en route back to Houghton after a week in the San Francisco Bay Area. I was participating in something that has become an annual Spring Break event, tagging along with 20 Michigan Tech students on a whirlwind tour we call the Silicon Valley Experience. Students from all different majors apply through an internal competition to take part. They visited 12 different companies over 4 days, learning all about the high-tech world of Silicon Valley and the entrepreneurial culture surrounding it. The list of companies includes household names – Apple, Google, Facebook – along with other established companies and new start-ups. There is a Michigan Tech connection at all these places, which helps to get our foot in the door. My time is split between visiting with Michigan Tech alumni, both old friends and new, and joining the students at company visits as my schedule allows. I want to give a shout-out here to our Director of Industry Program Development, Adam Johnson, for the terrific job he did at organizing the event and taking care of all the logistics.

After one of these trips to California I come away with so many impressions that I could easily fill two or three of these columns with my random thoughts. I just might.

First off, we all just have to admit that Silicon Valley is the center of the universe when it comes to innovation in the information technology space. There is no other place like it. It is brimming with all sorts of electrical engineers, computer engineers, software engineers, and entrepreneurs working to create the next big thing and disrupt last year’s technology, with the support of a massive economic engine of venture capital. Almost overnight, it seems, the technology created there has gone from a novelty to a necessity – search engines on Google, smart phones from Apple, social media on Facebook where these very words are being written. I can sit in an airport and be connected to family, friends, and work via a communication network called the Internet that hardly anyone imagined some 30-40 years ago. These are hugely powerful forces that have transformed our lives completely, and the pace of that change shows no signs of slowing down.

There is a lot of excitement and buzz surrounding these technological innovations, and as a result Silicon Valley attracts the best and brightest engineering talent. There are a lot of job opportunities, but even so the market can be pretty competitive as the top companies can afford to be pretty choosy. It’s like the song lyric about New York – if you can make it there, you can make it anywhere. In fact, the analogy with Broadway is pretty apt, as job interviews have been transformed from conversations across a desk to auditions of actual programming and engineering skill. I understand the process can be pretty grueling. However, if one has what it takes, the salaries and perks are unmatched in the engineering world.

One immediate impression that I come away with is how the workplace itself has changed over the past decade. Google was on the leading edge, but their style has been picked up by most of the other established companies and newcomers. On this trip it seemed to me that Facebook is raising the bar even further. Every day is casual day. I don’t even bother packing a tie when I travel to California anymore; I wore the same pair of jeans all this week and half the time I was overdressed. More remarkable is the level of amenities available to employees – free food and drink 24/7, all you can eat, game rooms, music rooms, barber shops, bicycle repair, even medical care. The days of residential dormitories on or near the corporate campuses are not far away. The whole idea is to keep engineers and programmers at work and happy for hours on end, and not give them any reason to stop being productive. I get to sample this workplace style every so often because of a Google-sponsored research project I am on right now. I have to wonder what it would be like all the time – I guess one gets used to it – but for the few days at a time that I see it, I feel like I am living high on the hog. For the companies, it is clear that the cost of these amenities is far outweighed by the value of a productive employee.

I will bring this to a close here, and follow up in the next few weeks with my thoughts on 1) the culture of entrepreneurship in the high-tech world, 2) what universities like Michigan Tech should be doing to help students prepare for success, and 3) what can other regions of U.S., like the upper Midwest, learn from Silicon Valley. No doubt I’ll be trolling the Internet on my smartphone and checking in with social media to get some good material.

– Dan

Daniel R. Fuhrmann, Dave House Professor and Chair

Department of Electrical and Computer Engineering

Michigan Technological Univerrsity


ECE well represented at the SPIE Photonics West

SPIE Photonics West attendees and presenters: (L-R)Abhinav Madhavachandran, Arash Hosseinzadeh, Derek Burrell (SPIE/OSA MTU chapter president, Liz Dreyer (Cloos), Anindya Majumdar, Mitch Kirby, and Nima Taherkhani
SPIE Photonics West attendees and presenters: (L-R) Abhinav Madhavachandran, Arash Hosseinzadeh, Derek Burrell (SPIE/OSA MTU chapter president), Liz Dreyer (Cloos), Anindya Majumdar, Mitch Kirby, and Nima Taherkhani

Michigan Technological University’s Department of Electrical and Computer Engineering (ECE), along with Departments Biomedical Engineering (BME) and Physics were well represented at the annual SPIE Photonics West conference held in San Francisco, CA, on February 13-18, 2016.

Arash Hosseinzadeh, PhD candidate in electrical engineering, Derek Burrell, BSEE senior and SPIE/OSA MTU chapter president, and Mitch Kirby, BSBE (EE minor) presented papers and research findings on topics:  Design and optimization of polymer ring resonator modulators for analog microwave photonic applications, Comparison of self-written waveguide techniques and bulk index matching for low-loss polymer waveguide interconnects, and Effects of incident intensity on laser speckle contrast imaging.

BME Chair Sean Kirkpatrick was session chair and moderator and ECE Prof. Chris Middlebrook co-authored two papers presented. Also attended were Nima Taherkhani, MSEE candidate, and ECE alumna Liz (Cloos) Dreyer ’12, currently a PhD pre-candidate in electrical engineering (optics) at the University of Michigan, Abhinav Madhavachandran, MSBE candidate, and Anindya Majumdar, PhD candidate Physics.

Student travel was partially funded by Michigan Tech’s Undergraduate Student Government (USG) and Graduate Student Government (GSG).

See more information on the SPIE/OSA MTU Chapter see mtu.osahost.org.


Fridays with Fuhrmann: ECE Students/Graduates Are In Demand!

FWF_image_20160219This past Tuesday Michigan Tech held its spring Career Fair at the Student Development Center. We had 227 recruiting organizations on campus, looking to hire our students and graduates for full-time, co-op, and internships positions. 139 of those companies were looking to hire electrical and/or computer engineers, among many others of course. The spring fair is always smaller than the fall version – last September we had 370 companies on campus – but even so, this is a big event by anyone’s standards. My hat’s off to the Michigan Tech Career Services office, which does an outstanding job for our students.

Over the years, Career Fair has become for me one of the most exciting and energizing days at Michigan Tech. You see students dressed to impress, and looking for that interview which could launch their career, and you see all the recruiters really interested in our students because of the value those students could bring to their organizations. I get the same story all the time – Michigan Tech students have a great work ethic and are ready to jump right in and make contributions, no matter where they land. A lot of people attribute this to our environment here, where students have to move a long way from Mom and Dad, develop as independent adults, and endure at least four harsh winters (although our little secret is that the winters are more fun than harsh.) Of course, we also believe that our educational programs that emphasize engineering and math fundamentals, individual skills, hands-on learning, and team projects have a lot to do with it too. Whatever the reasons might be, it is extremely gratifying to know that we are making a contribution to the economy and that our students are in demand. I heard anecdotal evidence that starting salaries for EEs are now pushing $70k and higher.

I like to talk to recruiters and find out what specific areas are in demand too. The hottest area for EEs right now, as it has been for several years, is controls. If you are not familiar with the field, control (in the engineering sense) is all about making things do what you want them to do, from cars to motors to appliances, to large factories and steel mills. The push toward automation in all areas of our society and economy is driving a demand for engineers who understand this field. Controls engineers tend to have broad interests, since to be successful one must have mastery over the mathematical fundamentals, as well as a working knowledge of the systems and components being controlled, which could be electrical, mechanical, or chemical. This combination of theoretical and practical skills seems to match our students pretty well.

We have been working to beef up the controls area of the ECE Department to meet this demand. What used to be an elective senior-level course in control theory was converted to a required junior-level course. Along with the School of Technology, we received a very generous gift from Nucor Steel to completely renovate a laboratory where EE and EET students learn about programmable logic controllers (PLCs) and their many applications; this is now known as the Nucor Industrial Control and Automation Laboratory. We still have one senior-level elective in digital and nonlinear control. ECE recently took over sponsorship of the Robotics Systems Enterprise. I do not think we are finished with this yet; I would love to see one or more additional courses that cover control system integration and the Internet of Everything, although this may take time and resources. Next year we may roll out a new Concentration in Controls Engineering, to go along with several existing concentration areas within the BSEE and BSCpE degree programs

You can see that events like the Career Fair do more than just find jobs for our students. Our relationships with industry partners help to inform us about what we need to be doing in our educational programs, both for them and for our students. I see a three-way “ecosystem” involving the university, the students, and industry, which right now seems to be working really well for everyone. The exciting challenge now is to keep those relationships thriving in an era of constant technological, economic, and societal change. There is something to look forward to every day!

– Dan

Daniel R. Fuhrmann
Dave House Professor and Chair
Department of Electrical and Computer Engineering
Michigan Technological University


Fridays with Fuhrmann: Colleges That Pay You Back . . . That You Can Actually Get Into

FWF_image_20160212

This week we learned that Michigan Tech made the top-200 list in Princeton Review’s “Colleges That Pay You Back” category.  These are the colleges that score highly when one looks at things like financial aid and starting salaries after graduation, the things that speak to the return on investment for a college education. It is good to be recognized for something that we pay attention to, and take a lot of pride in.

One thing that struck me in looking at the list is that the top 5 included Cal Tech, Princeton, and MIT.  I am quite certain that by the metrics used in this ranking, these colleges score very highly.  The cost of an education is very reasonable if not free, due to the all the financial aid available, and the starting salaries are probably through the roof.  There’s only one catch – the typical American high school student could never get in!  It’s cruel to hold schools like this up as paragons of value and then tell students they have no hope of going there.  I’m tempted to write Princeton Review and suggest a new category – “Colleges That Pay You Back That You Can Actually Get Into.”

If they had such a list, Michigan Tech would be right up there near the top.  Our in-state tuition is about $13k, there is a fair amount of financial aid available, starting salaries university-wide are in the mid-60s, and our admission rate is 75%!  Now a lot of people think that being ultra-exclusive is what makes for a great university, but I disagree.  What makes a university great is what is does for its students.  Michigan Tech takes students from all walks of life, all different backgrounds, and a wide range of abilities, and gives them the opportunity to create a meaningful and rewarding life for themselves if they are willing to work hard and do what it takes.  There are a lot of naturally gifted students here, but we also have a wide swath of normal everyday students, and we think everyone deserves a shot at the good life.  It’s not a cakewalk at Michigan Tech (although it is a lot of fun) but there is a big payoff at graduation.  It is interesting to note that, even with that 75% admission rate, our average high school GPA is 3.66 which means that a lot of talented students are choosing Michigan Tech over other more prestigious institutions, and quite a few weaker students are self-selecting out.

Don’t get me wrong about those highly-ranked schools.  I know from personal experience that Princeton is an absolutely fabulous place, where a lot of really smart people are surrounded by other really smart people, and doing good work.  All of their graduates are going to be very successful in life, not only because of the incredible education they receive, but also because they were talented enough to get in in the first place.  The issue I am raising here is that there is only so much a place like Princeton can do for the vast number of American high school seniors.  I am coming to believe that it is the Michigan Techs of the world that are doing the most good to prepare large numbers of young people to take their place in the 21st century economy.

I can’t resist getting in one more dig.  The “Colleges That Pay You Back” list was featured in a piece on the Today Show, and the Princeton Review rep that was being interviewed gave praise to Harvey Mudd College, a small engineering school east of Los Angeles.  I agree with his assessment; Harvey Mudd is a great school with a project-focused educational philosophy very similar to that of Michigan Tech.  In talking about the industry demand for graduates, the rep brought up the fact that 150 companies came to the Harvey Mudd campus recently to recruit.  150!  I laughed out loud.  At the Fall 2015 Career Fair, Michigan Tech had *370* companies and organizations on campus recruiting – and we are located in a geographical dead end, not the middle of southern California!  My hat is off to our Career Services office for the fabulous job that they do for our students and graduates.

Speaking of Career Services, next week I will stay in this same vein, reporting on our Spring Career Fair which is next Tuesday. Until then, Happy Valentines Day and Happy Presidents Day everyone!

– Dan

Daniel R. Fuhrmann
Dave House Professor and Chair
Department of Electrical and Computer Engineering
Michigan Technological University


Fridays with Fuhrmann: Michigan Tech’s Winter Wonderland

FWF_image_rev3_20160205This week Michigan Tech is celebrating its annual Winter Carnival. The students have Thursday and Friday off from classes, and there are a lot of winter-related activities going on. The most visible sign of Winter Carnival for most of us is the collection of interesting and creative snow sculptures that have popped up all over campus. These attract a lot of visitors and media attention, and are a lot of fun.

Up to now I have used this column to write about electrical and computer engineering, and engineering education, but I thought this week it would be appropriate to take a break and write about something else that Michigan Tech is famous for: snow.

Michigan Tech is, according to AccuWeather.com and some other polls, the snowiest campus in the United States, with over 200 inches of the white stuff per year on average. Snow is definitely part of who we are, part of our heritage and culture. In a typical winter the snow starts up around Thanksgiving, gets pretty serious in December and January, then stretches into February and March, sometimes even into April. The city and the university are all geared up to handle the snow; they keep the roads plowed and haul the snow away to snow dumps out of town when necessary. All the residents of Houghton – most, anyway – have a plan to handle the snow in their driveways, sidewalks and lawns. We take it all in stride. To be honest, most of us are “snow snobs” laughing with derision at poor souls further south when a couple of inches brings a city to its knees.

200 inches of snow sounds like a lot – and I guess it is – but for the most part it is pretty benign. One can see major winter storms on the national news that dump one or two feet of snow all at once on some unfortunate region, and even though that can happen here too it’s actually pretty rare. The reason we get so much snow is in the first place is something called “lake effect”, in which cold Arctic air blows down out of Canada from the north and west, across Lake Superior, picking up moisture from the warmer water, forming snow in the air and then dumping it on the Upper Peninsula when it hits land. Lake effect snow doesn’t need inclement weather to happen; I have seen snow falling and the sun shining all at the same time. Of course, we can also get what is called “system snow”, meaning the same kind of winter storm systems that can happen anywhere in the upper Midwest. Our biggest events occur when both happen at the same time, something they call “lake effect enhanced snow.” My main point here is that you don’t need major blizzards to create 200 inches of snow in a year. You just need a little bit at a time, over an extended period of around 4 months, and as long as the temperatures remain cold it just piles up.

So what is all this snow good for? In a word, plenty. Houghton residents and Michigan Tech students know that the best way to deal with the snow is to get out and enjoy it. One of my favorite activities is skiing, both downhill and cross-country. (I’m not particularly good at it, but I don’t let that stop me). For downhill skiing, Michigan Tech has its own Mont Ripley, just across the Portage from Houghton. It’s not a huge hill, only 450 feet vertical, but what it lacks in size it makes up for in convenience. I have a season pass and can go on a moment’s notice. Don’t let the small size fool you, either: it has plenty of challenging runs. For the more adventurous skier, an hour away near Copper Harbor, is the cult favorite Mount Bohemia. This place is for expert skiers only (the trail map says “No Beginners Allowed” in bold letters) with 900 feet vertical and almost entirely black diamond runs, and none of it groomed. It includes 400 acres of glade skiing too with some of that rated as double and triple black diamond. With a bare minimum of amenities at the bottom, Bohemia is paradise for ski nuts. If cross-country skiing is your thing, there are four different trails systems right in the local area, including an extensive set of trails owned and operated by Michigan Tech. This is a world-class facility in every sense; Michigan Tech has played host to Olympic trials and just last month hosted the U.S. national cross-country championships. The conditions are usually great, the trails are well maintained, and the scenery is beautiful. My only complaint, as a “classic” or “glide” skier, is having to put up with those healthier-than-thou “skate” skiers as they go zipping past me in their garish spandex outfits!

There is plenty to do besides skiing of course. Snowshoeing is a favorite activity for many. For those who prefer their winter sports indoors, hockey is very popular and in fact there are a number of ECE faculty members who play in a local recreational league. The ECE Department puts on a student-faculty hockey game every December. They even got me out on the ice my first year in the department (just once.) For those who like motorized sports, snowmobiling is big around here too. You might think there would be tension between the “natural” outdoors types and the snowmobilers, but in my observation the two camps have reached a sort of peaceful coexistence. The snowmobiles have their own set of trails which are quite extensive, covering hundreds of miles of old railroad beds across the U.P. (one would NEVER mix skiing and snowmobiling on the same trail system.) It can be a little noisy sometimes, but you get used to it quickly, and most people recognize the economic benefit to the region. People come from all over to ride our snowmobile trails, and the years we do the best are the ones when we have snow when others don’t, like in Wisconsin, Illinois, and downstate Michigan. There is snowmobile parking on the Michigan Tech campus, and once you get past the novelty it seems perfectly ordinary.

So there you have it – Michigan Tech, in addition to all of its contributions in science, technology, engineering, and math, is a winter wonderland. This is a unique place to live, work, and play. Students and alumni reading this know exactly what I’m talking about. Everybody else, you are welcome to visit – we’d love to show it to you.

– Dan

Daniel R. Fuhrmann
Dave House Professor and Chair
Department of Electrical and Computer Engineering
Michigan Technological University


Fridays with Fuhrmann: Removing the barriers for women in electrical and computer engineering

FWF_image_20160129

This week we learned that Michigan Tech, along with the University of Michigan and Michigan State University, has been selected for a grant from the National Center for Women and Information Technology (NCWIT) Pacesetters program, sponsored by the National Science Foundation (NSF), Google and Qualcomm. The aim is to develop aggressive goals and plans to increase the participation of women in computing and information technology. Michigan Tech is pleased to be recognized for its efforts to bring more women into the field. I congratulate Linda Ott from the Department of Computer Science on her leadership in bringing the grant proposal process to a successful conclusion.

This is a good opportunity for me to offer a few informal thoughts about the issue of women in electrical and computer engineering and what we can do, and need to be doing better, to bring more women into the field. This has been a conundrum for the ECE Department for a long time. We are not alone in that struggle; it is a nationwide issue. The female undergraduate enrollment in the ECE Department has hovered below 10% for many years, although there has been a very slow rise and this past fall we were at 10.8%, a minor victory of sorts I suppose. Many of us in electrical engineering are left wondering why this has to be the case. We can jump up and down and stand on our heads and say what a great field this is, and talk about all the career opportunities in EE (and I believe that with all my heart) but still that message doesn’t seem to be getting across, or at least isn’t making an impact. I will be the first to admit that I say all those things as a 58-year-old male who has had a reasonably successful and rewarding career, and that it is hard for me to see things from the perspective of a young woman about to graduate from high school.

You hear a lot of things about where the disconnect might be. It could be our culture, especially our youth culture, in which girls form opinions about themselves in middle school and high school about ability in math and science, which have little basis in truth but which they carry for the rest of their lives. It could be the professional environmental in high-tech areas like Silicon Valley, notorious for its “brogramming” culture in certain parts of the start-up world. It could be the lack of role models, in colleges and universities where electrical engineering and computer science is taught, and in industrial settings that come after. It could be that women look into the working world and just don’t see a path forward in an environment that is so dominated by men. All of these arguments have merit, and we need to be vigilant and aggressive in removing the barriers that are implied in each of them.

One often hears the argument that women are not attracted to electrical engineering because it is not a field that is “helping” or “nurturing”. I am going to go out on a limb here and say that this is complete hogwash and I reject it completely. First of all, saying that all women want to be caregivers is just buying into the stereotypes that have kept them out of the field in the first place. Second, and more importantly, the idea that electrical engineering is not a “helping” field is flat-out ridiculous. I would argue that electrical engineers have done more to help humankind in the 20th century than any other professional group you can name. What is more “helping” than bringing electrical power to every home and office in the United States? What is more “helping” than creating a communication network that allows people to connect via voice, text, or video, halfway around the world, at the touch of a button? What is more “helping” than designing the technology and the systems that provide for our common defense, protecting the nation and keeping us all safe in our homes? What is more “helping” than creating the technology that brings us the aesthetic joy and pleasure of music, video, and cinema? If someone wants to make an argument in support of the medical profession, I suppose we could sit down and have a good debate, but the first thing I would point out, as I did in this column three weeks ago, is that EEs were major players in that arena too!

Now that I got that off my chest, I’ll conclude by mentioning some of the things we are doing in the ECE Department at Michigan Tech to attract more women into our ranks. The ECE Department participates in Michigan Tech’s ADVANCE initiative, an NSF-supported program designed to the hiring and retention of women faculty, thereby creating a professional environment that our students can view as a model for the industrial world. We have wonderful and creative outreach programs for middle and high school age girls, in our summer camps and during the academic year; this is led enthusiastically by our Associate Chair Glen Archer, with help from a great group of students in the Blue Marble Security Enterprise. Dr. Archer was also the ECE point of contact for the successful NCWIT proposal. We have created an ECE Women’s Center in the EERC, a space on the 7th floor where our female students can meet for academic and social interactions. We have instituted two new concentrations within the BSEE degree, in Biomedical Applications and in Environmental Applications, that have a secondary but explicit aim of attracting more women to the field. I can’t say that we have found the magic bullet yet that is going to boost our female enrollment to 20% or 30% or more, but we are giving it our best shot.

This is an issue for which there are probably as many opinions as people who think about it. On this, and any other issue for that matter, I am always open to hearing from others and having a discussion. If you have read this far and want to take it further, please feel free to get in touch.

– Dan

Dan Fuhrmann
Dave House Professor and Chair
Department of Electrical and Computer Engineering
Michigan Technological University


Fridays with Fuhrmann – Teamwork without Borders

Google_2015_logo5I am writing today from beautiful Boulder, Colorado, where I have been attending a research progress review on a project I have been working on, along with other Michigan Tech faculty and students.  The project is sponsored by Google.  Michigan Tech is fortunate to be a research partner with Google on something they call a Multi-University Research Agreement, or MURA.  I can’t tell you the technical details of what we are doing, yet, but later this year everything will be made public.

Having observed how this project is managed over the past year, I am struck by how much the workplace, the team organizations, and the expectations of engineers have changed over the years.  This has been a great experience for me, not only because the work is interesting but because it gives me a glimpse of what our graduates can expect as they enter the workforce.

One of the most remarkable things I have noticed is how collaboration tools have made the world a smaller place, and have made geographical differences practically irrelevant.  The team working on this project, about 30 people all together, comprises full-time Google employees, independent contractors, engineering companies, and university teams like ours from Michigan Tech.  The group is spread out from Hawaii, to California, to Michigan, and to Europe.  Subsets of the team meet regularly via Google Hangout, which is a pretty easy-to-use teleconferencing tool, and it is like being in the same room (there is the one remaining issue of time zones, but most people don’t have a big problem with it.)   Even when most of the group gets together in the same city, like this week, there are still those who call in and contribute.

The success or failure of this project (and I’m pretty sure it’s going to be successful) depends on the ability of all the participants to work together as a team.  This week we had discussions about how things went in 2015, and the overall consensus was that the teamwork was pretty good.  It reminds me of why it is so important for us at Michigan Tech to teach our students about teamwork in our capstone projects, whether in Senior Design or Enterprise.  They are going to be working on teams when they leave the university, and knowing how to collaborate, how to get along, how to get work done on time, how to communicate, how to make expectations clear for others – these are all things that are going to be critical skills for career success.  The other side of teamwork that we stress at Michigan Tech is the development of individual skills.  Everyone on this Google project has a seat at the table because they are really good at what they do, and I don’t imagine that’s going to be any different anywhere else.

Finally, I will mention that the nature of engineering careers is changing rapidly.  Certainly there will be those that work full-time for a large corporation, and maybe they stay with that corporation a long time.  On the other hand, there are those that work for corporations, but change jobs often.  Others work as independent contractors, coming and going from teams as their skills are needed.  I am fascinated by these engineers, at least the ones I have seen in this group: they are extraordinarily talented in their particular area of expertise, and because of all the collaboration tools available today they can live wherever they want.   In all of these cases I am just talking about engineers selling their time and expertise; I haven’t begun to talk about entrepreneurship, which is another avenue that engineers are increasingly exploring.  The bottom line is, if an engineer is good at what he or she does, their career arc and their lifestyle is limited only by the imagination.

At Michigan Tech we do our best to prepare students for this new engineering environment of the 21st century.  I am always open to feedback about how well we are doing.

Being able to travel to meetings like this has its perks.  On Friday, when this is posted, I’ll be taking a vacation day and skiing at Loveland Pass, in the Rocky Mountains not too far Denver.  Finally, I have a chance to see if all my time spent on Mont Ripley has done me any good!

– Dan

Dan Fuhrmann, Dave House Professor and Chair
Department of Electrical and Computer Engineering
Michigan Technological University