Category: Electrical and Computer Engineering

Solar Farms, Not Tobacco Fields

Big Think Story HeadlineResearch by Electrical Engineering alumnus Ram Krishnan ‘16 and Joshua Pearce (MSE/ECE) on converting tobacco farms to solar photovoltaic farms was covered widely in the media including; Modern FarmerPopular Mechanics and the Weather Channel.

An article about Joshua Pearce’s research on replacing tobacco fields with solar arrays was recently featured in IEEE Electronics 360Popular Mechanics, the Institute of Engineering and Technology, the Fifth Estate (Australian business newspaper), Solar Thermal MagazinePV MagazineScience Daily, the Weather Channel and Big Think.

Related:

Farm Sunshine, Not Cancer: Replacing Tobacco Fields with Solar Arrays
Saving Lives and Money: The Potential of Solar to Replace Coal

Michigan Tech Researchers Honored for their Contributions in 2017

Researchers in the lab

At the Research Development Day held Jan. 11, 2018, the following individuals were recognized for their research contributions in calendar year 2017.

College of Engineering

Top research expenditures: Jeff Naber (ME-EM), Greg Odegard (ME-EM), Paul Sanders (MSE)

Related:

Michigan Tech Automotive Energy Efficiency Research Receives Federal Award of $2.8 Million from US Department of Energy

NASA Taps Tech Professor to Lead $15 Million Space Technology Research Institute

Chemical Engineering

Lei Pan received his first external funding as a principal investigator at Michigan Tech.

Civil and Environmental Engineering

Hui Yao (formerly CEE) received his first external funding as a principal investigator at Michigan Tech.

David Watkins received an award of more than $1 million.

Related:

Household Sustainability: Consuming Food, Energy, Water

Electrical and Computer Engineering

Jeremy Bos, Lucia Gauchia, and Tony Pinar each received their first external funding as a principal investigator at Michigan Tech.

Geological and Mining Engineering and Sciences

Snehamoy Chatterjee, James DeGraff, Mark Kulie, and Matthew Portfleet each received their first external funding as a principal investigator at Michigan Tech.

Materials Science and Engineering

2017 Michigan Tech Research Award: Yun Hang Hu

Bhakta Rath Research Award: Yun Hang Hu and Wei Wei

Joe Licavoli received his first external funding as a principal investigator at Michigan Tech.

Related:

Yun Hang Hu Wins Both Research Award and Bhakta Rath Award

Mechanical Engineering-Engineering Mechanics

Parisa Abadi, Chunpei Cai, Hassan Masoud, and Ye Sun each received their first external funding as a principal investigator at Michigan Tech.

Jeff Naber and Greg Odegard each received awards of more than $1 million.

Open-Source Hardware Paper Ranks High

Open Source Slide Dryer
Open Source Slide Dryer

Electrical engineering graduate student Shane Oberloier co-authored a paper with Joshua Pearce (MSE|ECE): General Design Procedure for Free and Open-Source Hardware for Scientific Equipment. in the journal Designs. The paper is currently ranked in the top 0.1% on Academia.edu.

Designs 20182(1), 2; doi:10.3390/designs2010002

Abstract

Distributed digital manufacturing of free and open-source scientific hardware (FOSH) used for scientific experiments has been shown to in general reduce the costs of scientific hardware by 90–99%. In part due to these cost savings, the manufacturing of scientific equipment is beginning to move away from a central paradigm of purchasing proprietary equipment to one in which scientists themselves download open-source designs, fabricate components with digital manufacturing technology, and then assemble the equipment themselves. This trend introduces a need for new formal design procedures that designers can follow when targeting this scientific audience. This study provides five steps in the procedure, encompassing six design principles for the development of free and open-source hardware for scientific applications. A case study is provided for an open-source slide dryer that can be easily fabricated for under $20, which is more than 300 times less than some commercial alternatives.

Read more at Designs.

Michigan Tech Exhibits in 2018 AutoMobili-D

AutoMobili-D with cars and people

Michigan Tech will participate in the 2018 AutoMobili-D exposition in Detroit. The event will run from Jan. 12-21. A portion of this program overlaps with the North American International Auto Show.

AutoMobili-D features 150,000 sq. ft. of dynamic display communities in the Cobo Center Atrium overlooking the international waterway and the adjoining Planet M hall.

Michigan Tech will be located in the “Universities” section of AutoMobili-D which will have about 30 universities including MIT, U-M and Carnegie Mellon. Michigan Tech’s booth will feature our unique research capabilities related to automotive research and unstructured environments.

Predebon represents Michigan Tech at Michigan auto show funding new autonomous test track

Bill Predebon (ME-EM) represented Michigan Tech at the Governor’s press conference on the American Center for Mobility (ACM) at the International Auto Show in the Cobo Center for Detroit on Jan. 16. Subaru of America gave a two million dollar sponsorship to the ACM with state, business and education officials on the stage. All of the representatives from the ACM University Consortium were present on stage.

$2M launches new wave of funding for Michigan’s autonomous test track

The announcement at Detroit’s auto show about Subaru’s new connection to the ACM is only the first significant development projected for the site in 2018. ACM officials promise more to come as the site gains traction.

Read more at Mlive, by Paula Gardner.

Three Enterprise Teams Compete in Fifth Annual Rekhi Innovation Challenge

BoardSport Color Gradient GraphicThe Fifth Annual Rekhi Innovation Challenge kicked off on Friday Nov. 10, 2017. Three Enterprise teams are competing for funding this year: Blue Marble Security, BoardSport Technologies and Velovations. The Rekhi Challenge is a crowdfunding competition to help promote and support student innovation and entrepreneurship through Michigan Tech’s crowdfunding site, Superior Ideas. The team that raises the most money will receive a monetary match of up to $5,000.

Monetary awards for total number of unique visitors, total number of unique funders, most social media engagement, most creative marketing plan and the first team to raise $1,000 will also be presented to teams at the conclusion of the competition.

Superior Ideas was established in 2012 to help bring university research and public service projects to life. The site uses crowdfunding to raise money and awareness for university research and public service projects that may not qualify for grant funding.

The Rekhi Innovation Challenge was developed in collaboration with the Enterprise Program Office and the Vice President for Research Office with support from Michigan Tech alumnus and longtime donor Kanwal Rekhi. The Silicon Valley-based entrepreneur, earned his master’s degree in electrical engineering from Michigan Tech in 1969.

Enterprise teams that have participated in past challenges include Innovative Global Solutions, Robotics Systems, Supermileage Systems, Aerospace, Blizzard Baja, GEAR and Open Source Hardware. Velovations took first place in the last competition with $2,550 in donations and a match of $2,550 from Rekhi, bringing the grand total to $5,100 in funding for their RENEW-U project.

RENEW-U is an ergometer for wheelchair users to exercise upper-extremity muscles in order to improve strength and mobility. Over the last four years, the Rekhi Innovation Challenge has provided more than $58,000 in support for 23 different student projects, attracting 267 unique donors.

For this year’s Rekhi Innovation Challenge, Blue Marble Security Enterprise is raising money to reach out to various community members and groups to increase interest in STEM fields among middle and high school students, particularly women.

BoardSport Technologies wants to develop a SmartBoard that will track snowboarders via GPS and REECO location to ensure a speedy rescue if caught in an avalanche or lost.

Velovations Enterprise is working with a local trails club to design and build a multi-purpose trail groomer with modular parts that can be swapped in the field to accommodate varying conditions.

If you’d like to learn more about any of these projects or donate, visit Superior Ideas. The Rekhi Innovation Challenge will run through March 31, 2018. Help support student innovation and entrepreneurship at Michigan Tech by making a donation today.

Demand dispatch—Balancing power in the grid in a nontraditional way

According to the National Renewable Energy Lab (NREL), distributed energy resources like these photovoltaic (PV) systems in a Boulder neighborhood—especially when they are paired with on-site storage—may eventually make large centralized power plants obsolete. Photo Credit: Topher Donahue
According to the National Renewable Energy Lab (NREL), distributed energy resources like these photovoltaic (PV) systems in a Boulder neighborhood—especially when they are paired with on-site storage—may eventually make large centralized power plants obsolete. Photo Credit: Topher Donahue

Traditionally, in the electric power grid, generation follows electric power consumption, or demand. Instantaneous fluctuation in demand is primarily matched by controlling the power output of large generators.

Sumit Paudyal, Electrical & Computer Engineering
Sumit Paudyal, Electrical & Computer Engineering

As renewable energy sources including solar and wind power become more predominant, generation patterns have become more random. Finding the instantaneous power balance in the grid is imperative. Demand dispatch—the precise, direct control of customer loads—makes it possible.

Michigan Tech researcher Sumit Paudyal and his team are developing efficient real-time control algorithms to aggregate distributed energy resources, and coordinate them with the control of the underlying power grid infrastructure.

“Sensors, smart meters, smart appliances, home energy management systems, and other smart grid technologies facilitate the realization of the demand dispatch concept,” Paudyal explains.

“The use of demand dispatch has promising potential in the US, where it is estimated that one-fourth of the total demand for electricity could be dispatchable using smart grid technologies.”

Sumit Paudyal

Coordination and control in real time is crucial for the successful implementation of demand dispatch on a large scale. “Our goal is to enable control dispatch distributed resources for the very same grid-level applications—frequency control, regulation, and load following—traditionally provided by expensive generators,” adds Paudyal.

“We have solved the demand dispatch problem of thermostatically-controlled loads in buildings and electric vehicle loads connected to moderate-size power distribution grids. The inherent challenge of the demand dispatch process is the computational complexity arising from the real-time control and coordination of hundreds to millions of customer loads in the system,” he adds. “We are now taking a distributed control approach to achieve computational efficiency in practical-sized, large-scale power grids.”

AV START Act May Boost Autonomous Vehicle Testing

Gary Peters and Jeff Naber
U.S. Sen. Gary Peters and Jeff Naber

HOUGHTON — Testing of autonomous vehicles, such as that being done at Michigan Technological University, could get a boost with legislation working its way through Congress.

The American Vision for Safer Transportation through Advancement of Revolutionary Technologies (AV START) Act was approved by the Senate Commerce, Science and Transportation Committee in October. U.S. Sen.

Gary Peters, D-Mich., sponsored the bill along with Sen. John Thune, R-S.D. U.S. Sen. Debbie Stabenow, D-Mich., is a co-sponsor of the legislation.

In March, Peters visited Tech’s Advanced Power System Research Center to get informed of Tech’s research and development efforts into autonomous vehicles.

Jeff Naber, director of the center, said the bill will enable the advancement of autonomous vehicle functions.

Read more at the Mining Gazette, by Garrett Neese.

Authoring and Editing Activity for Joshua Pearce

The BridgeJoshua Pearce (MSE/ECE) was the guest editor for the National Academy of Engineers’ Fall Issue of The Bridge on Open Source Hardware.

The complete issue and all individual articles can be downloaded here.

Joshua Pearce (MSE/ECE) and ECE graduate students Prannay Malu and Utkarsh Sharma co-authored the paper, Agrivoltaic potential on grape farms in India, in Sustainable Energy Technologies and Assessments.

Pearce co-authored a paper Micro-Raman Scattering of Nanoscale Silicon in Amorphous and Porous Silicon in Zeitschrift für Physikalische Chemie.

Pearce and Michigan Tech alumnus Jephias Gwamuri  coauthored, “Open source 3D printers: an appropriate technology for building low cost optics labs for the developing communities“, published in Proc. SPIE 10452, 14th Conference on Education and Training in Optics and Photonics: ETOP 2017.

Pearce and biomedical engineering student Ross Michaels published a short note: 3-D printing open-source click-MUAC bands for identification of malnutrition in Public Health Nutrition.

In the News

Alumna Dhwani Trivedi (ECE) and Joshua Pearce (MSE/ECE) published Open Source 3-D Printed Nutating Mixer in Applied Sciences. Their work was covered by 3Ders in Michigan engineers design open source 3D printed rotating lab mixer and in GongKong, which is the China Industrial Network.

Pearce’s summary “How solar power can protect the U.S. military from threats to the electric grid” on collaboration with PhD Student Emily Prehoda (SS) and Chelsea Schelly (SS) was picked up by the Associated Press and covered widely, including: LA TimesGovTechChicago TribuneSan Francisco ChronicleRaw StoryECS and Real Clear Defense, among others.

Their work was later covered by the investment news in Motley FoolBusiness Insider and Green Biz, and internationally in Sputnik News.

In Print

MSE alumna Amber Haselhuhn coauthored a paper with Paul Sanders (MSE) and Joshua Pearce (MSE/ECE) Hypoeutectic Aluminum–Silicon Alloy Development for GMAW-Based 3-D Printing Using Wedge Castings published in the International Journal of Metalcasting.

Alumnus Chenlong Zhang coauthored a paper with Sandra Cvetanovic (ECE, undergraduate) and Pearce (MSE/ECE), Fabricating Ordered 2-D Nano-Structured Arrays Using Nanosphere Lithography. The paper appeared in MethodsX.

ECE alumna Siranee Nuchitprasitchai co-authored a paper with Mike Roggemann (ECE) and Pearce (MSE/ECE), Factors effecting real-time optical monitoring of fused filament 3D printing. It was published in Progress in Additive Manufacturing.

Incoming Engineering Students Interviewed

Michigan Tech welcomed more than 1,400 freshmen Sunday at the MacInnes Student Ice Arena.

Students chose Michigan Tech for a number of reasons, some for academics.
Benjamin Syznowski

I heard it’s a really good engineering school. I was in Gross Point Robotics for four years and it kind of instilled in me that engineer spirit. Freshman Chemical Engineering Major Benjamin Syznowski

Some for the opportunities Michigan Tech offers off campus.
Tyler Arthur

I like the area, I don’t know, it’s a really nice place, just kind of suited me I guess. Just kind of getting out and exploring, learning new things, meeting new people. Freshman Computer Engineering Major Tyler Arthur

Read more and watch the video at WLUC TV-6/UpperMichiganSource by David Jackson.

Huskies Fall 2017

Michigan Tech welcomes newest huskies

Hundreds of new students met on Walker Lawn this evening to become acquainted with Michigan Tech traditions. Some of the activities were broomball and making boats and statues.

Read more and watch the video at WJMN TV3/UPMatters by Rebecca Bartelme.

NSF Funding on Deep Learning in Geosystems

Zhen Liu
Zhen Liu

Zhen (Leo) Liu (CEE) is the principal investigator on a project that has received a $227,367 research and development grand from the National Science Foundation.

Shiyan Hu (ECE/MTTI) is Co-PI on the project “Image-Data-Driven Deep Learning in Geosystems.” This is a two-year project.

By Sponsored Programs.

Abstract

Breakthroughs in deep learning in 2006 triggered numerous cutting-edge innovations in text processing, speech recognition, driverless cars, disease diagnosis, and so on. This project will utilize the core concepts underlying the recent computer vision innovations to address a rarely-discussed, yet urgent issue in engineering: how to analyze the explosively increasing image data including images and videos, which are difficult to analyze with traditional methods.

The goal of this study is to understand the image-data-driven deep learning in geosystems with an exploratory investigation into the stability analysis of retaining walls. To achieve the goal, the recent breakthroughs in computer vision, which were later used as one of the core techniques in the development of Google’s AlphaGo, will be studied for its capacity in assessing the stability of a typical geosystem, i.e., retaining walls.

Read more at the National Science Foundation.