Category: Research

GLRC Summer and Fall 2022 Student Awards

Please join the Great Lakes Research Center (GLRC) in congratulating the Summer and Fall 2022 GLRC Student Research and Travel Grant recipients.

The GLRC student grants are intended to provide undergraduate and graduate students advised by GLRC members an opportunity to gain experience in writing competitive grants, to perform research they would not be able to attempt due to funding limitations, or to travel to a professional conference to present a poster or paper about their research.

Student grants also provide research seed data for advisors to use in pursuing externally funded research support and travel grants help amplify areas of research expertise at Michigan Tech. Funded students are expected to participate/volunteer for at least one GLRC activity during the grant period.

Student Research Grant recipient:

Student Travel Grant recipients:

  • Timothy Stone, M.S. student — Social Sciences
    • GLRC member advisor: Donald Lafreniere
    • Attending: 2022 Social Sciences History Association Annual Conference
    • Presentation: “Exploring the Built and Social Determinants of Health in a 20th Century Industrial City”
  • Mai Anh Tran, Ph.D. student — College of Forest Resources and Environmental Science 
    • GLRC member advisor: Valoree Gagnon
    • Attending: History of Science Society 2022 Annual Meeting – Sustainability, Regeneration, and Resiliency
    • Presentation: “Tracing the Resilience Concept Through the History of Science and the Lens of Indigenous Knowledge”
  • Tessa Tormoen, B.S. student — Biological Sciences
    • GLRC member advisor: Jill Olin
    • Attending: The Wildlife Society National Conference 2022
    • Presentation: “Using DNA Metabarcoding to Evaluate Dietary Resource Partitioning Among Two Sympatric Tilefish”
  • Emily Shaw, Ph.D. student — Civil, Environmental, and Geospatial Engineering
    • GLRC member advisor: Noel Urban
    • Attended: 2022 American Chemical Society Fall Meeting – Sustainability in a Changing World
    • Presentation: “Toxicity in Fish Tissue: Redefining Our Understandings by Quantifying Mixture and Combined Toxicity”
  • Enid Partika, Ph.D. student — Civil, Environmental, and Geospatial Engineering
    • GLRC member advisors: Judith Perlinger, Noel Urban 
    • Attending: Dioxin 22 – 42nd International Symposium on Halogenated Persistent Organic Pollutants 
    • Presentation: “Filling the Data Gap on Responses of Fish PCB Content to Remedial Actions in Torch Lake, Michigan”
  • James Juip, Ph.D. student — Social Sciences
    • GLRC member advisor: Donald Lafreniere 
    • Attending: Social Science History Association Annual Meeting – Reverberations of Empire: Histories, Legacies & Lineages 
    • Presentation: “Utilizing HSDIs to Support Community Engaged Interdisciplinary Education and Heritage Interpretation”
  • John McCall, M.S. student — Biological Sciences
    • GLRC member advisor: Gordon Paterson
    • Attending: The Wildlife Society Annual Conference
    • Presentation: “Evaluating Genotoxicity of Mine Tailings on Two Game Fish in a Spawning Reef in Lake Superior (Michigan)”

The GLRC awarded travel grants to the following students attending COP27, in Sharm El-Sheikh, Egypt, with Sarah Green (Chem):

  • Rose Daily, Ph.D. student — Civil, Environmental and Geospatial Engineering, speaking on the U.S. Center Panel on the topic of “Climate Education in the US”
  • Ayush Chutani, Ph.D. student — Mechanical Engineering-Engineering Mechanics, participating in U.N. side event “Climate Leadership Across Generations”
  • Katherine Huerta-Sanchez, M.S. student — Social Sciences, presenting “Voices and Visions: The Art and Science of Climate Action. Youth Environmental Alliance in Higher Education (YEAH ) and PEACE BOAT US”
  • Anna Kavanaugh, B.S. student — Social Sciences, presenting “From the Roots Up: Community Solutions for Reducing Food Waste”
  • Zachary Hough Solomon, M.S. student — Social Sciences, presenting “The Knowledge and Policy Disconnect: Using Local Knowledge to Inform Climate Science”

GLRC Student Travel Grant applications are accepted anytime and will be reviewed on the last Friday of each month. Applications must be submitted at least two weeks in advance of travel. GLRC Student Research Grant applications are accepted three times each year — Nov. 1, March 1 and July 1.

By the Great Lakes Research Center.

Educating the Next Generation of Climate Leaders with participating institution logos.
Panel of four people and host at the podium.
Climate action panel with Rose Daily speaking.
Rose Daily, Graduate Student, Michigan Technological University, speaking on stage.
Panel audience asking questions.
Climate Change Education panel of four people on stage.

Related

Carolyn Duncan: Free Falling

When it comes to preventing falls. we can learn a few things from penguins, says Dr. Carolyn Duncan at Michigan Technological University.
Carolyn Duncan, Michigan Tech Assistant Professor, Kinesiology and Integrative Physiology, Michigan Tech

Carolyn Duncan shares her knowledge on Husky Bites, a free, interactive Zoom webinar this Monday, 11/14 at 6 pm ET. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 10/14 at 6 ET? Grab a bite with Carolyn Duncan, assistant professor, Kinesiology and Integrative Physiology at Michigan Tech.

Joining in will be Sarah Aslani, PhD student in Cognitive and Learning Sciences and a member of  Prof. Duncan’s MTU Balance and Functional Mobility Lab, who will share just how balance is studied in the lab.

Falls are a major cause of serious injury and death in our society. So how can we prevent them? 

Sarah Aslani, a biomedical engineer is earning her PhD in Cognitive and Learning Sciences at Michigan Tech.

“We need greater understanding of exactly what affects our ability to regain our balance when we lose it,” Duncan explains. “Not all risk factors affect balance in the same way. There are many unanswered questions, and that’s where our research comes in,” she says.

“Some major culprits, though: clutter and poor lighting.”

During Husky Bites, Prof. Duncan will explore what is currently known on how we regain our balance, share some things we can do to improve our balance and prevent falls, and discuss her ongoing research on balance control and fall prevention.

Duncan earned her BSc in Kinesiology and MSc in Occupational Biomechanics, both at the University of New Brunswick, and her PhD in Mechanical Engineering with a focus on biomechanics at Memorial University of Newfoundland. She was a postdoctoral fellow in Neuroscience at the University of Waterloo in the Toronto Rehabilitation Institute, then taught engineering ergonomics courses at Virginia Tech before joining the faculty at Michigan Tech in 2018.

Are wide stairs safer or more dangerous? And what does the “run length” have to do with it? Pictured here: stairs up to the viewing platform at  Porcupine Mountains State Wilderness Park.

After obtaining her doctorate in mechanical engineering, Prof. Duncan spent time working as an ergonomist and fall prevention specialist before she became a researcher. Her work has spanned from fall prevention in offshore industries to developing fall prevention safety programs for workplaces. These experiences give her valuable real-world insights in the fall-related challenges people face in everyday life.

How do we anticipate falling? And what happens if we are distracted?

Balance control research in Prof. Duncan’s MTU Balance and Functional Mobility Lab at Michigan Tech

At Michigan Tech, Duncan investigates factors that influence successful balance recovery—from lighting, load-carrying, and aging, to cognitive, neurological, and physical disorders and musculoskeletal injury. She also works with the design of built environments for older adults and special populations. 

Her work studying balance recovery in moving environments—such as the wave motion encountered in maritime settings—involves asking questions, such as “would dancers have better balance on a boat?” 

(Prof. Duncan found that while dancers demonstrated significantly fewer stumbling events when on a simulated boat than novices during the first trial, dancers did not perform as well as individuals with offshore experience.)

Arriving recently from the warmer climate of Tehran to earn her PhD in Cognitive Learning Sciences in Michigan’s Upper Peninsula, Aslani has not yet experienced a Houghton winter, or, thankfully, ever slipped on the ice and snow. She is co-advised by Prof. Duncan and Kevin Trewartha, an assistant professor with joint appointment in CLA and KIP. They’re already preparing Aslani for what to expect when the snowflakes start to fly and temperatures dip.

“Sarah has a background in biomedical engineering, and just started this semester,” says Duncan. “She will be doing her PhD research on factors that influence our ability to recover our balance. I look forward to furthering this area of research with her in the upcoming years. And we look forward to teaching her how to snowboard and ski as part of our Lab bonding time, too.”

“I was looking for a research project that would cover both of my interests—biology and neuroscience—when I saw Dr. Duncan’s profile on the Michigan Tech website,” adds Aslani. “So I sent her an email. Then, in our first meeting, it felt right. I knew this would be a place where I’d really fit in.”

“Mountain biking and alpine skiing are my passions, so the Upper Peninsula is a great place to live all year around,” says Dr. Duncan.

In the lab, Duncan, Aslani and other members of the team perform balance control research. “Type 2 Diabetes is a big challenge facing many older adults, with devastating effects on balance,” Duncan says. “My team is excited to start examining low-cost group exercise programs, including Tai Chi, to see how effective they are for improving balance and decreasing risk of falls. We’ll be working in collaboration with Dr. Kevin Trewartha and physical therapists Dr. Cameron Williams and Dr. Lydia Lytle.”

“Dim lighting is often associated with falls in the home,” Duncan adds. “We’re currently looking into how lighting specifically affects balance recovery. We hope this knowledge will be used to develop guidelines on optimal lighting in homes and built environments in our community  to decrease risk of falls.”

During Husky Bites, Prof. Duncan promises to offer some takeaways for all of us. She’ll provide exact details on the best kinds of shoes, railings, and stairs to prevent falls. 

Dr. Duncan, how did you first get into engineering? What sparked your interest?

Cats can teach us about reactive balance ability. This is Brady, Dr. Duncan’s kitty!

I first got into Engineering when I decided that pursuing a PhD in mechanical engineering would best suit my long-term goals of being a researcher in biomechanics. My previous undergraduate and Masters degrees in Kinesiology and Science with focuses in biomechanics and ergonomics had sparked a desire to learn more advanced biomechanical modeling techniques. A PhD in Mechanical Engineering allowed me to learn these advanced biomechanical modeling techniques while also gaining the foundational knowledge in mechanical and human factors engineering to pursue this career.

Hometown, family?
I’m originally from Rothesay, New Brunswick, Canada, about 45 minutes east of Maine. My parents were both public school teachers, and my grandparents were all healthcare professionals or engineers. I have one younger brother who is currently an electrician in Vancouver, British Columbia. 

What do you like to do in your spare time?

I’m a member of the Mont Ripley Ski Patrol and Copper Harbor Bike Patrol. I’ve recently taken up Nordic skiing and disc golf. When I’m not outside I love to cook and am an avid indoor gardener. I have a two-year old ginger tabby cat named “Brady the Tomcat,” in honor of Tom Brady (I’m a lifelong New England Patriots fan). I found Brady at Copper Country Humane Society right here in Houghton. 

“I always enjoy chatting with my friends,” says Aslani.

Sarah, how did you first get into engineering? What sparked your interest?

Growing up, I was always trying to figure out my real passion, some area in which I am really talented, so I could direct all my attention and power toward it.

I tried out many things, including painting and playing piano. But, they were never enough for me. After getting admitted to the Iranian Biology Olympiad (IrBO) at age fourteen, and then, a year later, to the Iranian’s national Mathematics Olympiad, I started to realize that I may be good at both those things (biology and math). That is why a couple of years later, I chose to pursue a biomedical engineering degree.

Hometown, family?
Until recently, I lived in Tehran, Iran. It is the capital of Iran. Very crowded, but it is very beautiful, with lots of countryside spots to go on picnics, like Chitgar Lake. Plus, there are some great places to go hiking.

Hiking is one of Aslani’s passions. She’s excited to get out and start exploring the UP!

We are a small family. I have a younger brother who also chose the engineering field. My dad is an agricultural engineer. My mum is a biotechnology researcher. 

What do you like to do in your spare time?
The first thing is that I love hiking. When I was in Iran I used to go hiking every few weeks.

Another thing I am crazy about is learning new languages. I learn by watching movies and listening to music. Recently I started learning Spanish. I love Spanish music, so I memorized the lyrics and tried them out with karaoke!

Last but not least, I love chatting with my friends. Sometimes when I want to clear my head and not think of anything, I’ll go hang out with a friend. 

John Vucetich: Restoring the Balance—Wolves and Our Relationship with Nature

Wolves on a wilderness island illuminate lessons on the environment, extinction, and life. Photo credit: John Vucetich

John Vucetich shares his knowledge on Husky Bites this Monday, November 7 at 6 pm ET. Learn something new in just 30 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Michigan Tech Distinguished Professor John Vucetich leads the the longest running predator-prey study in the world.

Restoring the Balance: What are you doing for supper this Monday 11/7 at 6 pm ET? Grab a bite on Zoom with Dean Janet Callahan and John Vucetich, Distinguished Professor, College of Forest Resources and Environmental Science at Michigan Tech.

Prof. Vucetich studies the wolves—and the moose that sustain them—of the boreal forest of Isle Royale National Park. It’s something he’s done for more than a quarter century. He joined Michigan Tech’s Isle Royale Wolf-Moose study in the early 1990s as an undergraduate student majoring in biological science. He went on to earn a PhD in Forest Sciences at Tech in 1999.

Three years later Vucetich began leading the study along with SFRES research professor Rolf Peterson, who is now retired. This year will be the study’s 66th year monitoring wolves and moose on Isle Royale—the longest running predator-prey study in the world. (Their project website is isleroyalewolf.org.)

“Much of my work is aimed at developing insights that emerge from the synthesis of science and ethics,” says Vucetich. “Environmental ethicists and environmental scientists have a common goal, which is to better understand how we ought to relate to nature,” he adds. “Nevertheless, these two groups employ wildly different methods and premises.”

During Husky Bites, Vucetich will read from his book, Restoring the Balance: What Wolves Teach Us About Our Relationship with Nature, published by Johns Hopkins University Press in 2021. 

Restoring the Balance : What Wolves Tell Us About Our Relationship with Nature, by John Vucetich (Johns Hopkins University Press, 2021).

“It’s a book about wolves,” he says, simply, “and how humans relate to wolves.”

It’s also an exhilarating, multifaceted, thought-provoking read. Vucetich combines environmental philosophy with field notes chronicling his day-to-day experience as a scientist. Examining the fate of wolves in the wild, he not only shares lessons learned from these wolves, but also explains their impact on humanity’s fundamental responsibilities to the natural world.

“Science can never tell us what we ought to do or how we ought to behave,” says Vucetich. “Science only describes the way the world is. Ethics by itself can’t tell us what to do, either. Ethics needs science—facts about the world—to be properly informed.”

“John is a real field man, a dauntingly quantitative biologist, and a dedicated student of logic:  the coalescence of this whole emerges as a leading conservation ethicist,” writes David W. Macdonald, professor of wildlife conservation at Oxford University, in the foreword of Restoring the Balance. “In this book, John Vucetich asks you to imagine yourself as a young wolf, dreaming of attempting to kill your first moose, ten times your size, using only your teeth,” adds Macdonald. “He asks the big question (bravely, for a hard-nosed quantitative biologist in a profession neurotic about anthropomorphism) what is it like to be a wolf? He thinks, as do I, that this is a more sensible question than you might suspect, in part because it turns out there’s so much similarity between us and them.”

“The island is Isle Royale, a wilderness surrounded by the largest freshwater lake in the world. I make these observations from the Flagship, an airplane just large enough for a pilot and one observer. After the flight, questions hack their way through the recursive web of dendrites that is my consciousness. What is the life of a wolf like? What is it like to be a wolf? Those questions are too presumptuous. The first questions should penetrate down to the foundation: Of all the millions of species on planet Earth, why wolves, why not some other?” 

John Vucetich, Restoring the Balance

Joining in: Becky Cassel grew up in the Upper Peninsula of Michigan. She teaches Earth Sciences in Pennsylvania.

Joining in during Husky Bites will be Becky Cassel. She teaches Earth science and environmental science to ninth graders at a high school outside of Hershey, Pennsylvania  (Lower Dauphin School District).

“I have not met Dr. Vucetich in person. As a teacher, I have spent many years using the Isle Royale Wolf-Moose study to talk about populations and predator/prey relationships in my classroom,” says Cassel.  

“For Christmas last year I gave my father a copy of Restoring the Balance. When he was done reading it, both my husband and I read it. It was riveting. I emailed Dean Callahan to suggest inviting Dr. Vucetich onto Husky Bites. The Michigan Tech Wolf-Moose study is found in every biology textbook used today. I knew many Husky Bites watchers would be familiar and interested in the topic.”

The view from Flagship, over Lake Superior.

Excerpt

Prof. John Vucetich at work on Isle Royale. “What does a healthy relationship with the natural world look like? Are humans the only persons to inhabit Earth—or do we share the planet with uncounted ‘nonhuman persons’?’

During Husky Bites, Prof. Vucetich will read passages from Restoring the Balance. The passage below is taken from the book’s first chapter, “Why Wolves?”

February 18. We saw what they smelled—a cow moose and her calf, who had themselves been foraging. It didn’t look good for the cow and calf right from the beginning. The calf was too far away from her mother, and they may have had different ideas about how to handle the situation. The wolves rushed in. The cow turned to face the wolves, expertly positioned between the wolves and her calf, but only for a second. The calf bolted. After a flash of confusion’s hesitation, the cow pivoted and did the same. Had she not, the wolves would have rushed past the cow and bloodied the snow with her calf. The break in coordination between cow and calf put four or five wind-thrown trees lying in a crisscrossed mess between the cow and her tender love. The cow hurled herself over the partially fallen trunks that were nearly chest-high on a moose. She caught up with her frantic calf before the wolves did. Then the chase was on, led by the least experienced of them all—the calf. The cow, capable of running faster, stayed immediately behind the calf, no matter what direction the terror-ridden mind of that calf decided to take. Every third or fourth step the cow snapped one of its rear hooves back toward the teeth of death. One solid knock to the head would rattle loose the life from, even, a hound of hell. After a couple of minutes and perhaps a third of a mile, the pace slowed. By the third minute everyone was walking. The calf, the cow, and the wolves. The stakes were high for all, but not greater than the exhaustion they shared. Eventually they all stopped. Not a hair’s width separated the cow and calf, and the wolves were just 20 feet away. The cow faced the wolves. A few minutes later the wolves walked away. By nightfall Chippewa Harbor Pack had pushed on another six miles or so, passing who-knows-how-many-more moose. Their stomachs remained empty.

Praise for Restoring the Balance:

“John Vucetich creates a masterful blend of memoir, science, and ethics with a message that is both timely and timeless.” — Michael Paul Nelson, Professor of Environmental Ethics and Philosophy, Oregon State University

“This exhilarating book is a remarkable triumph―beautifully crafted.” — David W. Macdonald, Professor of Wildlife Conservation, University of Oxford

“This book is juicy with field notes―the stories of charismatic individual wolves like the Old Gray Guy, and complex science made understandable and seductively enticing to the reader with even the tiniest interest in wolf survival and natural history.” — Nancy Jo Tubbs, Chair, Board of Directors, International Wolf Center

Becky visited Isle Royale.

Becky, how did you first get into teaching? What sparked your interest?

I taught sailing lessons as a summer job in Escanaba, Michigan, while pursuing a degree at Miami of Ohio. After graduating and working for a year I realized that I really enjoyed teaching much more than my chosen career. I decided to go back and earn my Earth science teaching certification.

As a self-professed “outdoor girl”, I love all things Earth science. I was amazed how much I enjoyed every single Earth science class I needed to take in order to earn my science teacher certificate. I had been working in Pennsylvania at the time, so I earned my teacher certificate in Pennsylvania, and then was hired to teach there, too. I met my husband, Craig, and we decided to stay in Pennsylvania. Of course we travel to Escanaba every summer to get my UP fix!

Hometown, family?

My hometown is Escanaba, Michigan; however my parents are from the Philadelphia area. My father chose Michigan Tech for college (Tech Alum ’59) and fell in love with the area. The Cliff Notes version is that he returned to the East, married my mother, and convinced her to move to the UP.  I was 2 months old at the time. I have an older sister (also a teacher) who lives in central Maine.

Craig and Becky Cassel enjoy bicycle touring in Michigan’s Upper Peninsula (the UP).

My husband Craig is a biology and anatomy teacher, and we met while teaching in the same school. We’ve driven into school together every day since then. He just retired at the end of last year, so now I drive in on my own.

We have two children. Our son, Elliot, just graduated from Virginia Tech last year and returned to college this year to earn his Earth science teacher certificate. Our daughter, Avery, chose to go to Michigan Tech like her grandfather, and entered the environmental engineering program. She has found her “outdoor people” at Michigan Tech.

Any hobbies? Pets? What do you like to do in your spare time?

I guess my biggest hobby is bicycle touring, but we also hike, run, and spend time outdoors. I grew up sailing in Esky, but sailing in Pennsylvania is NOT like sailing on the Great Lakes so I don’t do much of that except when I return to Escanaba.

My husband’s family owns a farm outside of Hershey, Pennsylvania, and we live on one end of the farm. This has allowed us to raise our children as outdoor lovers. We also have a beagle (Henry) and several chickens and rabbits. The farm itself is a thoroughbred racehorse farm, operated by my in-laws. We aren’t involved in horse training; instead, we grow grapes. We planted and opened a vineyard and winery in 2008, so that’s our other “hobby”.

Read more:

Preparing To Live With Wolves, By John Vucetich, January 16, 2012, The New York Times

Ecologist Ponders Fairness To Wildlife And The Thoughts Of Moose, By Rachel Duckett, December 21, 2021, Great Lakes Echo

What Wolves Tell Us about Our Relationship with Nature, by Marc Bekoff Ph.D., October 21, 2021, Psychology Today

Isle Royale Winter Study: Good Year for Wolves, Tough One for Moose, by Cyndi Perkins, August 24, 2022 Michigan Tech News

Engineering Students Place High in Computing[MTU] Showcase 2022

Trevor and Dominika stand next to their poster.
Trevor Petrin (left) and Dominika Bobik (right).

The Institute of Computing and Cybersystems (ICC) is pleased to announce the winners of the Computing[MTU] Showcase Poster Session of October 10. Congratulations and thanks to all the graduate and undergraduate students who presented their research posters!

Please visit the showcase’s Research Poster Session page to view the poster abstracts and photos from the event.

Undergraduate Winners

  • First Place: Dominika Bobik (ECE, Computer Engineering) — “An Educational Modeling Software Tool That Teaches Computational Thinking Skills”
  • Second Place: Niccolo Jeanetta-Wark (MEEM, Mechanical Engineering) — “Performance Measurement of Trajectory Tracking Controllers for Wheeled Mobile Robots”
  • Third Place: Kristoffer Larsen — “A machine learning-based method for cardiac resynchronization therapy decision support”

Graduate Winners

  • First Place: Shashank Pathrudkar (MEEM, Mechanical Engineering) — “Interpretable machine learning model for the deformation of multiwalled carbon nanotubes”
  • Second Place: Nicholas Hamilton — “Enhancing Visualization and Explainability of Computer Vision Models with Local Interpretable Model-Agnostic Explanations (LIME)”
  • Third Place (Tie): Zonghan Lyu (BME, Biomedical Engineering) — “Automated Image Segmentation for Computational Analysis of Patients with Abdominal Aortic Aneurysms”
  • Third Place (Tie): Tauseef Mamun — “When to be Aware of your Self-Driving Vehicle: Use of Social Media Posts to Understand Problems and Misconceptions about Tesla’s Full Self-Driving Mode”

Read more on the ICC Blog, by Karen Johnson.

Excellence in Student Publishing

Global map with readership numbers marked at various locations.

This week, October 17–21, 2022, the Graduate School and the Van Pelt and Opie Library celebrate International Open Access Week. The event is organized by the Scholarly Publishing and Academic Resources Coalition (SPARC).

This year, we’re marking Open Access Week by recognizing the 10 years of master’s theses, doctoral dissertations and master’s reports (ETDRs) that are freely available to the world through Digital Commons @ Michigan Tech, the University’s institutional repository. This collection of works is comprehensive back to 2012, and some are nearly a decade older. With Digital Commons, we’re provided with usage statistics that show activity on the platform and across the web. Throughout the week, we’ll share stories and insights informed by these statistics that speak to how publishing Open Access has benefitted Michigan Tech students. In the meantime, take a moment to check out the collection of ETDRs on Digital Commons @ Michigan Tech.

One great feature of Digital Commons @ Michigan Tech is its shareable readership dashboard. This dashboard displays statistics related to how users are interacting with content on the repository. For example, users have downloaded Michigan Tech master’s theses, master’s reports and dissertations over 1.5 million times from 227 different countries.

Top Ten Visited Submissions

  1. 33,471 hits — “Determination of Bulk Density of Rock Core Using Standard Industry Methods
    Author: Kacy Mackenzey Crawford, Master of Science in Civil Engineering
  2. 18,930 hits — “Modeling, Simulation and Control of Hybrid Electric Vehicle Drive While Minimizing Energy Input Requirements Using Optimized Gear Ratios
    Author: Sanjai Massey, Master of Science in Electrical Engineering
  3. 18,484 hits — “Teaching the Gas Properties and Gas Laws: An Inquiry Unit with Alternative Assessment
    Author: Michael Hammar, Master of Science in Applied Science Education
  4. 17,781 hits — “Twelve Factors Influencing Sustainable Recycling of Municipal Solid Waste in Developing Countries
    Author: Alexis Manda Troschinetz, Master of Science in Environmental Engineering
  5. 14,281 hits — “Parameter Estimation for Transformer Modeling
    Author: Sung Don Cho, Doctor of Philosophy in Electrical Engineering
  6. 12,895 hits — “Aerothermodynamic Cycle Analysis of a Dual-Spool, Separate-Exhaust Turbofan Engine with an Interstage Turbine Burner
    Author: Ka Heng Liew, Doctor of Philosophy in Mechanical Engineering-Engineering Mechanics
  7. 12,597 hits — “Virus Purification, Detection and Removal
    Author: Khrupa Saagar Vijayaragavan, Doctor of Philosophy in Chemical Engineering
  8. 11,089 hits — “Measuring the Elastic Modulus of Polymers Using the Atomic Force Microscope
    Author: Daniel Hoffman, Master of Science in Materials Science and Engineering
  9. 11,050 hits — “Identity and Ritual: The American Consumption of True Crime
    Author: Rebecca Frost, Doctor of Philosophy in Rhetoric, Theory and Culture
  10. 10,561 hits — “Energy Harvesting from Body Motion Using Rotational Micro-Generation
    Author: Edwar. Romero-Ramirez, Doctor of Philosophy in Mechanical Engineering-Engineering Mechanics

To dig deeper into the collection, it consists of 2,611 dissertations, theses and reports with 76% of them available Open Access. The Open Access collection represents each college on campus:

  • College of Engineering: 58%
  • College of Sciences and Arts: 28%
  • College of Forest Resources and Environmental Science: 8%
  • College of Computing: 3%
  • College of Business: 1%
  • School of Technology: 1%

Citations for Student Engineering Works

Matthew Howard’s master’s thesis, “Multi-software modeling technique for field distribution propagation through an optical vertical interconnect assembly,” has been mentioned on Facebook 527 times. “Impact of E20 Fuel on High-Performance, Two-Stroke Engine,” a master’s report by Jon Gregory Loesche, was cited in a 2021 technical report by the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.

By the Graduate School and the Van Pelt and Opie Library.

Yixin Liu: Sensing Smells

Dogs can potentially detect human diseases—including cancer and diabetes—from smell alone. At Michigan Tech, Yixin Liu, an assistant professor Chemical Engineering, develops “electronic noses” that can rival even the best dog nose.

Yixin Liu shares her knowledge on Husky Bites, a free, interactive webinar this Monday, 10/17 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Prof. Yixin Liu

What are you doing for supper this Monday night 10/17 at 6 ET? Grab a bite with Yixin Liu, assistant professor of Chemical Engineering at Michigan Tech. Joining in will be Riley Smith, the first undergraduate student researcher to join Prof. Liu’s Smart Chemical and Biological Sensing Laboratory at Michigan Tech. Liu develops chemical sensors and biosensors, electronic noses/tongues and sensor data analytics.

During Husky Bites, Prof. Liu will share how she goes about developing an “electronic nose” using an array of gas sensors and a data-analyzing algorithm. The result is a device that can mimic our biological olfactory system, able to sense smells in various applications, such as gas pollutants and breath analysis for medical diagnosis.

The ideal electronic nose is capable of sensing far better than even the best human nose ( more like a dog nose). “Dogs have a superior sense of smell. With training, dogs can sniff out bombs and drugs, pursue suspects, search and rescue lives, and potentially detect human diseases—including cancer and diabetes—from smell alone,” Liu says.

Prof. Liu uses nanofibers (seen here on the nanoscale) as sensing material to create electrochemical sensors. Coupled with machine learning techniques, the device turns into a smart nose with a number of superpowers.

Liu joined the faculty of the Department of Chemical Engineering as an assistant professor in 2020. She earned her PhD in Chemical Engineering from the University of Connecticut and her bachelor’s degree in Polymer Material Science and Engineering from Zhejiang University in China. 

Riley Smith

“Riley was the first undergraduate student to join my lab at Michigan Tech,” says Liu. He reached out to me last year after my brief presentation to the Michigan Tech AIChE student group, indicating his interest in undergraduate research. 

“Riley is highly motivated and proactive,” adds Liu. “After training on the lab’s electrospinning machine for nanofiber fabrication, he took the initiative to come up with a detailed operation manual with pictures. Riley’s manual has helped many students in my lab to learn how to use the machine.”

“Once I heard Dr. Liu’s AIChE presentation, I reached out to learn more,” Smith adds. “I started working with Dr. Liu, and now I work along with many more students who have joined the team as the lab continues to grow.”

Liu’s interdisciplinary lab combines advanced nanostructured materials, device design, and data-driven approaches to develop high performance chemical and biological sensing technologies. Liu and her collaborators already have 4 US patents granted, with another six patent applications pending.

The Liu Research Group at dinner.

At Michigan Tech Liu and her research group work together to develop electrochemical sensors coupled with machine learning techniques. “The knowledge gained from our research leads us to other new low-cost biosensing devices and manufacturing processes,” says Liu. 

Control panel for the electrospinning machine in Dr. Liu’s Smart Chemical and Biological Sensing Lab.

Recently she was awarded an Engineering Research Initiation (ERI) grant from the National Science Foundation to develop a nanocomposite sensor for the simultaneous detection of glucose and cortisol.

“People with diabetes are 2-3 times more likely to have depression,” note Liu. “In addition, symptoms of depression and anxiety are often associated with elevated cortisol (the ‘stress hormone’) which can lead to the onset of type 2 diabetes. If we could monitor both glucose and cortisol levels in a cost-effective and effortless way, that could help manage both diabetes and stress—it could also prevent pre-diabetes from progressing to full-blown type 2 diabetes,” Liu says.

The needle that generates the nanofibers.

“One of my long-term research goals is to develop a low-cost, easy-to-manufacture and high-performance biosensing technology based on e-MIPS—electropolymerized Moleculary Imprinted Polymers. I think e-MIPS could become an important platform for detecting biomarkers in human biofluids,” she says. “This would allow for ‘decentralized diagnostics’—rapid medical testing that can take place outside a hospital setting. Testing could be done at a satellite lab, doctor’s office, or even at home.”

Developing a reliable sensor that can detect polluting gas in real time, at an early stage, even in aggressively high heat, is another one of Liu’s research projects.

“Monitoring and control of combustion-related gases, including oxygen, carbon monoxide and hydrocarbons, are a top priority in many industries,” she says. “To be effective, though, sensors must be operate at 800~1000 ◦C. Right now, very few sensors have been able to detect gases above 600 ◦C, even in a laboratory setting.”

Once achieved, though, Liu says real-time, high-heat monitoring could save energy and help reduce pollution emissions.

Some of Prof. Liu’s beautiful acrylic paintings!

Prof. Liu, how did you first get into engineering? What sparked your interest?

My father is a mechanical engineer, and I have always watched him fix things and build new things at home since I was very young. I liked math, hands-on experiments, and exploring new technologies when I was in high school. It was quite natural for me to choose an engineering major when I went to university.

Hometown, family?

I grew up in Sichuan, China (hometown of spicy foods and the panda.) I was the only child of my parents (no siblings). My husband and I have a 4-year-old son.

What do you like to do in your spare time?

I have liked painting for years, and still do acrylic paintings in my spare time. I started to learn piano 5 years ago, and now I’m still learning, practicing, and having fun.

“Riley’s manual has helped many students in my lab to learn how to use the electrospinning machine,” says Prof. Liu.

Riley, how did you first get into engineering? What sparked your interest?

I first got interested after having a conversation with my chemistry teacher in high school. I thought that engineering would be a fitting job—I knew I wanted to do something that required some type of problem-solving. After talking with a family friend who works in chemical engineering, my interest solidified. I finished my associate degree in science at a community college and started looking into four-year technological universities. 

Hometown, family?

I am from Kalamazoo, Michigan. My family consists of my mom, a younger brother who is in his junior year of high school, an older sister who is getting married in October, and my dad who works in consulting.   

What do you like to do in your spare time?

I like to spend a lot of time outdoors, whether hiking, kayaking, or hammocking. I have a small poodle mix who accompanies me on many of my outdoor ventures. I also like to work with my hands, on either woodworking projects or refinishing furniture.

Mike Roggemann: Mixing Lasers with the Atmosphere

“A mirage is light from the sky that is refracted back to your eye, with turbulence thrown in to make it shimmer,” says Michigan Tech Professor Emeritus Mike Roggeman. Image of ship on horizon, taken in Dubrovnik. Credit: Thriol, Flickr.

Mike Roggemann shares his knowledge on Husky Bites, a free, interactive webinar this Monday, 10/10 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Michigan Tech Professor Emeritus Mike Roggemann

What are you doing for supper this Monday night 10/10 at 6 ET? Grab a bite with Associate Dean Leonard Bohmann and Mike Roggemann, professor emeritus of Electrical and Computer Engineering at Michigan Tech. The two worked together for many years as colleagues in the ECE Department.

Note: Dr. Bohmann will fill in as host for Husky Bites on Monday, October 10. He is Michigan Tech’s associate dean for academic affairs in the College of Engineering, and also a professor of Electrical and Computer Engineering.

According to the National Weather Service, turbulence is an irregular motion of the air resulting from eddies and vertical currents, associated with fronts, wind shear, and thunderstorms. It can be chaotic, irregular, random, and swirling. “That’s the mechanical form of turbulence,” notes Roggemann. “I’m interested in the optical effects of turbulence,” he says.

Leonard Bohmann is associate dean for academic affairs in the College of Engineering at Michigan Tech

“Think back to a hot summer day, when you’ve seen a car driving down a road that’s shimmering in the heat,” he says. “There are some really interesting atmospheric optic effects. A huge amount of work has been done to understand the nature of these effects and how to mitigate them—due to the practical impact on a huge number of things we really want to work.”

Over the years at Michigan Tech, Roggemann has put Michigan Tech’s north woods location on Lake Superior to great use for his research. One of his goals: to extend the range and understand the performance of imaging and laser systems in any kind of weather. 

“We’ve got it all here—remote locations, blizzards, thunderstorms, heat waves,” he says. “The UP is uniquely suited to the job.” 

Data from some of Dr. Roggemann’s previous research.

Roggemann and his research team at Michigan Tech developed a laser communications testbed to evaluate adaptive optics algorithms, installing it atop an eight-story building in the nearby city of Hancock. The system directed a laser beam 3.2 kilometers to a receiver located on the roof of the Dow Building on campus. They spent several years monitoring atmospheric turbulence, scattering, and weather to understand how such factors fluctuate in the real world. 


A Swiss F-5E Jet shimmers in the heat at RAF Fairford in England.

Free space laser communications systems send lasers through air. One challenge is that it’s not really free space—it’s air. “Atmosphere changes and turbulence can make the laser beam wander,” says Roggemann.  “Some technologies exist to partially mitigate these effects, but none are perfect,” he says.

Channel fading is one problem, and sometimes deep channel fading. If it goes down too low, the communication link can be broken. Roggemann and his research team of students designed and tested various ways of solving this problem to make laser communications more stable and reliable—and be able to achieve the highest possible channel capacity.

One thing they tried: using adaptive optics (AO) on the transmitter, to steer and focus the laser beam on the receiver aperture. The result was less fluctuation, which reduced fading. They discovered another benefit—an increase in received optical signal power.

A fellow of Optica (OSA) and fellow of SPIE, Roggeman is coauthor of the book “Imaging Through Turbulence,” and has authored or coauthored over sixty journal articles and over fifty conference papers, many relating to laser communication. Some of his other research interests include optical remote-sensing system design and analysis, and signal and image processing.

“Lasers and the atmosphere don’t mix all that well.”

Mike Roggemann

Before joining the faculty at Michigan Tech, Roggemann was an associate professor of engineering physics at the Air Force Institute of Technology, Wright-Patterson AFB, in Ohio. 

He earned a BS in Electrical Engineering at Iowa University, and an MS and PhD in Electrical Engineering at the Air Force Institute of Technology. Along the way he worked as an electro-optics program manager at Wright Laboratories, Wright-Patterson AFB, in Ohio, and an imaging researcher at the Phillips Laboratory, Kirtland AFB, in New Mexico. 

When you spot this sign, you’re in the right place to witness the Paulding Light.

Prof. Roggemann mentored and advised countless electrical engineering students over the years, many of whom earned their doctorate degrees. In addition to conducting research and teaching in photonics and optics, Prof. Roggeman served as the ECE department’s graduate director, no small feat. At any given time, the ECE department has about 50-plus PhD students and 140-plus MS students. 

In 2011, a group of Roggemann’s research students at Michigan Tech, led by then PhD student Jeremy Bos, examined the mysterious Paulding Light phenomena taking place in Paulding, Michigan. Their goal: separate fact from fiction.

Spoiler Alert: “The Paulding Light can be explained as a refraction of headlights from an inversion over the valley,” says Roggemann.

“If not for the students, why are we here?”

Leonard Bohmann
Free space laser communication is being tested and developed by NASA. At Michigan Tech, Dr. Roggemann is an expert on another kind: near ground laser communication. Credit: Laser Communications Relay Demonstration payload, NASA.

Dr. Bohmann was serving as interim ECE department chair when the position for the College of Engineering associate dean opened up. “I kind of like the administrative side of things, so I applied for the job,” he says.

It gives him the chance to participate in professional service, including volunteering as a program evaluator for ABET, the organization that accredits engineering programs (including Michigan Tech’s). He’s an ABET commissioner, working with ABET for close to 20 years now. 

But how did Dean Bohmann end up at Michigan Tech in the first place? The year was 1988, early October. 

“Janeen and I decided to make the long drive to Houghton to see what it was like at Michigan Tech,” he recalls. “That night we stayed at McLain State Park campground. We got up in the morning, looked out of the tent, and saw snowflakes in the air.” 

The rest is history. “We decided to move to the Great North Woods, to live near the shore of Lake Superior. This August it will have been 33 years!” 

The Paulding Light. Note: the small green light is a star. Credit: Wikimedia Commons

Dr. Roggemann, how did you first get into engineering? What sparked your interest?

I was fascinated by the space program as a boy in the 1960s and 1970s, and resolved to go to college and major in science or engineering to be a part of it.

Hometown?

I was born and raised in a small town in Iowa. After high school I went to Iowa State, and entered the Air Force upon graduation. I had some interesting assignments while on active duty, and got both my MSEE and PhD. I spent my last five years on active duty as a professor at the Air Force Institute of Technology. Upon retiring from the Air Force I joined the faculty at Michigan Tech, in the ECE department. I retired from academic life in June 2022.

What do you like to do in your spare time?

Quite a few hobbies:  hunting, fishing, exercise, reading, shooting replica firearms from the 1800’s, boating, traveling (more now that I’m not tied down by the academic calendar!), snowmobiling, snowshoeing, moving snow in the winter, and hiking. Never a dull moment. We have two lovable dogs, Fritz and Penne.  

Dr. Bohmann at Design Expo, Michigan Tech’s Annual showcase of Enterprise and Senior Design student projects.

Dr. Bohmann, what is your advice for new students? 

“It is important to study hard, but also important to play hard. If you are going to come to Michigan Tech you need to embrace the outdoors, because it’s here.”

Hometown?

Cincinnati, Ohio. “I went to college in Dayton, and graduate school in Madison. I just kept moving north until I ran into water—Lake Superior—and then I stopped.”

Family?

Janeen and Nick. Before that, I grew up in a family of 10.

What do you like to do in your spare time?

I like to snowshoe to and from work.

What is the most rewarding aspect of your job?

“Realizing that I am impacting students all across the college. Although I am more removed from day to day interactions, I have a chance to make sure they are getting a great education.”

Read More:

It’s Out There: Return to the Paulding Light

Watch

Play Unraveling the Paulding Light mystery. video
Preview image for Unraveling the Paulding Light mystery. video

Unraveling the Paulding Light mystery.

How to Mend a Broken Heart? Flow Dynamics.

Brennan Vogl and Dr. Hoda Hatoum test heart valves for overall performance and energetics, turbulence generated, sinus hemodynamics, plus ventricular, atrial, pulmonic, and aortic flows.
Brennan Vogl

Assistant Professor Hoda Hatoum conducts cardiovascular research with a team of students in her Biofluids Lab at Michigan Tech. One of those students, Brennan Vogl, first started at Michigan Tech as an undergraduate student studying biomedical engineering. Brennan is now pursuing his PhD, with Dr. Hatoum serving as his advisor. Brennan’s research focus is cardiovascular hemodynamics, the study of how blood flows through the cardiovascular system.

Prof. Hatoum, Brennan and her research team—six students in all—research complex structural heart biomechanics, develop prosthetic heart valves and examine structure-function relationships of the heart in both health and disease.

Dr. Hoda Hatoum

To do this, they integrate principles of fluid mechanics, design and manufacturing with clinical expertise. They also work with collaborators nationwide, including Mayo Clinic, Ohio State, Vanderbilt, Piedmont Hospital and St. Paul’s Hospital Vancouver.

“It is a great pleasure to work with Brennan,” says Dr. Hatoum. “He handles multiple projects, both experimental and computational, and excels in all aspects of them. I am proud of the tremendous improvement he keeps showing, and also his constant motivation to do even better.”

“When a student first joins our lab, they do not have any idea about any of the problems we are working on. As they get exposed to the problems, they begin to add their own valuable perspective. The student experience is an amazing one, and also rewarding,” she says.

“One of my goals is to evaluate and provide answers to clinicians so they know what therapy suits their patients best.”

Hoda Hatoum

Prof. Hatoum earned her BS in Mechanical Engineering from the American University of Beirut and her PhD in Mechanical Engineering from the Ohio State University. She was awarded an American Heart Association postdoctoral fellowship, and completed her postdoctoral training at the Ohio State University and at Georgia Institute of Technology before joining the faculty at Michigan Tech in 2020. Brennan was the first student to begin working with Dr. Hatoum in her lab.

One important focus for the team: studying how AFib ablation impacts the heart’s left atrial flow. Hatoum designed and built her own pulse duplicator system—a heart simulator—that emulates the left heart side of a cardiovascular system. She also uses a particle image velocimetry system in her lab, to characterize the flow field in vessels and organs.

AFib, or Atrial fibrillation is when the heart beats in an irregular way. It affects up to 6 million individuals in the US, a number expected to double by 2030. More than 454,000 hospitalizations with AFib as the primary diagnosis happen each year.

Another focus for Dr. Hatoum and her team: developing patient-specific cardiovascular models. The team conducts in vitro tests to assess the performance and flow characteristics of prosthetic heart valves. “We test multiple commercially-available prosthetic heart valves, and our in-house made prosthetic valves, too,” says Hatoum.

From the Biofluids Lab website: a wide array of current commercial bioprosthetic transcatheter mitral valves.

“Transcatheter bioprosthetic heart valves are made of biological materials, including pig or cow valves, but these are prone to degeneration. This can lead to compromised valve performance, and ultimately necessitate another valve replacement,” she notes.

To solve this problem, Hatoum collaborates with material science experts from different universities in the US and around the world to use novel biomaterials that are biocompatible, durable and suitable for cardiovascular applications. 

Look closely at this photo to see the closed leaflets of an aortic valve.

“Every patient is very different, which makes the problem exciting and challenging at the same time.”

Hoda Hatoum

The treatment of congenital heart defects in children is yet another strong focus for Hatoum. She works to devise alternative treatments for the highly-invasive surgeries currently required for pulmonary atresia and Kawasaki disease, collaborating with multiple institutions to acquire patient data. Then, using experimental and computational fluid dynamics, Hatoum and her team examine the different scenarios of various surgical design approaches in the lab.

“One very important goal is to develop predictive models that will help clinicians anticipate adverse outcomes,” she says.

“In some centers in the US and the world, the heart team won’t operate without engineers modeling for them—to visualize the problem, design a solution better, improve therapeutic outcomes, and avoid as much as possible any adverse outcomes.”

Hoda Hatoum

Dr. Hatoum, which area of research pulls your heartstrings the most?

Transcatheter aortic heart valves. With the rise of minimally-invasive surgeries, the clinical field is moving towards transcatheter approaches to replace heart valves, rather than open heart surgery. I believe this is an urgent field to look into, so we can minimize as much as possible any adverse outcomes, improve valve designs and promote longevity of the device.

How did you first get into engineering? What sparked your interest?

As a high-school student, I got the chance to go on a school trip to several universities and I was fascinated by the projects that mechanical engineering students did. That was what determined my major and what sparked my interest.

Hometown, family?

I was raised in Kab Elias, Bekaa, Lebanon. It’s about 45 kilometers (28 miles) from the Lebanese capital, Beirut. The majority of my family still lives there.

‘My niece took this image from the balcony of our house in Lebanon, located in Kab Elias. It shows the broad landscape and the mountains, and the Lebanese coffee cup that’s basically iconic.”

Brennan, how did you first get into engineering? What sparked your interest?

I first got into engineering when I participated in Michigan Tech’s Summer Youth Program (SYP) in high school. At SYP I got to explore all of the different engineering fields and participate in various projects for each field. Having this hands-on experience really sparked my interest in engineering.

Hometown, family?

I grew up in Saginaw, Michigan. My family now lives in Florida, so I get to escape the Upper Peninsula cold and visit them in the warm Florida weather. I have two Boston Terriers—Milo and Poppy. They live with my parents in Florida. I don’t think they would be able to handle the cold here in Houghton, as much as I would enjoy them living with me.

Pasi Lautala: Railroads—Back to the Future

The US rail network comprises nearly 140,000 miles of track—and more than 200,000 highway-rail grade crossings. Photo credit: Eric Peterson.

Pasi Lautala shares his knowledge on Husky Bites, a free, interactive webinar this Monday, 9/26 at 6 pm. Learn something new in just 30 minutes or so, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Dr. Pasi Lautala

What are you doing for supper this Monday night 9/26 at 6 ET? Grab a bite with Dean Janet Callahan and Pasi Lautala, associate professor of Civil, Environmental, and Geospatial Engineering at Michigan Tech.

Lautala directs Michigan Tech’s innovative Rail Transportation Program (RTP), preparing students to thrive and succeed in the rail industry—something he has done for the past 15 years.

Joining in will be Michigan Tech alumnus Eric Peterson, retired assistant chief engineer of public projects at CSX Transportation, who helped establish and grow the RTP at Michigan Tech.

During Husky Bites the two will share the secrets behind the energy efficiency of rail, and guide us from past railroads to what they are today. They’ll also discuss how railroads are securing a future in the era of rapid technology development. 

“Rail is considered more energy efficient. In many ways it is a more sustainable transportation mode compared to highway and air transport, says Lautala. “However, in order for rail transportation to keep up with the other modes of transportation, it must keep developing alongside them—and with an equal amount of passion. In the US, some of those challenges (but also opportunities) include long asset lives, non-flexible structures, and private ownership.”

Pat and Eric Peterson

Before moving to the US from Finland, Lautala worked for several summers with the Finnish Railway system. After graduating from Michigan Tech with his MS in Civil Engineering, he worked for five years as a railroad and highway engineering consultant in Chicago, before returning to Michigan Tech for his PhD in Rail Transportation and Engineering Education.

Michigan Tech’s Railroad Engineering Activity Club, aka REAC, is “for students interested in establishing contacts with, learning about, getting involved with, and a hair’s breadth away from being obsessed with the railroad and transportation industries in the United States of America and beyond.” Lautala and Peterson are honorary members.

“I first met Eric as a young consultant,” Lautala recalls. “He was one of the managers for our client, CSX Transportation. Once I returned to campus as a doctoral student, I learned Eric was a former classmate of my PhD advisor. Eric became an influential force and tireless supporter of our efforts to start the Rail Transportation Program. He still teaches some signals and communications lectures for us.”

“My wife, Pat, and I supported the startup of the Michigan Tech Rail Transportation Program with Pasi as the leader,” adds Peterson. “At the time, we were hiring engineers at CSX for all types of jobs, including field supervisors—people comfortable working both in the field and in the office. The rest of the rail industry was hiring, too.” 

“The railroad industry is still hungry for young people with interest and education in rail transportation,” says Lautala. When he first came to Michigan Tech from Finland in 1996 to earn an MS in Civil Engineering, Lautala brought the railroad bug with him. The son of a locomotive engineer, Lautala grew up in a culture that embraced rail transportation as a sustainable public transit alternative, as well as an efficient way to move freight.

While the US has the most extensive and efficient freight rail system in the world, the development of railroads had been on the back burner for decades, while the rest of the world kept moving forward, he observes. 

In 2007 Lautala established the RTP at Michigan Tech in order to advance rail education to a wide range of students, with integrated coursework, for both undergraduate and graduate students, and a minor in rail transportation. CN, Canadian National Railway Company, quickly came on board as a major sponsor of the program. The RTP also collaborates closely with many industry companies, associations and alumni. Their involvement provides professional networking, education, field trips, conferences, and guest speakers for Michigan Tech students involved in the Railroad Engineering and Activities Club (REAC), the first student chapter ever established by the American Railway Engineering and Maintenance of Way Association (AREMA).

“Students can also take part in hands-on rail industry-sponsored research projects across disciplines. Some topic areas include grade crossing and trespasser safety, materials research on railway equipment, locomotive emissions, the impact of climate change on railroads, and more,” says Lautala. Learning by doing is a central component of RTP’s approach to rail education.

Rail companies actively work with RTP to fill openings with Michigan Tech RTP students, whether for for full time jobs, internships or co-ops. And the RTP Experience wouldn’t be complete without the Railroad Night, an over 15 year tradition at Michigan Tech.

“Rail just makes sense, and it’s something this country needs.”

Pasi Lautala
Michigan Tech RTP students conduct field work

Lautala initially founded RTP’s innovative Summer in Finland program, which integrated an international component to rail education. It was an intensive five-week program, a collaboration among Michigan Tech, the Tampere University of Technology, and the North American and Finnish railroad industry. “That program created sufficient interest from the students and industry to officially launch the Rail Transportation Program,” Lautala says.

Outside Michigan Tech, Lautala serves as chair of National Academies’ Research Transportation Board Rail Group. “There are so many research possibilities—everything from infrastructure, with automated track-monitoring systems and recycled materials in railroad ties, to energy efficient equipment and operations,” he says.

Team Lautala!

Lautala’s own engineering research currently involves connected and autonomous vehicle communications at grade crossings, with fellow Civil, Environmental, and Geospatial Associate Professor Kuilin Zhang. The two are working to develop safe and efficient driving and routing strategies for autonomous vehicles at railroad grade crossings. Reduced energy consumption, emissions, and potential time delays are some of their goals. Their research is supported with two separate grants from the Federal Railroad Administration (FRA).

Dr. Lautala, how did you first get into engineering? What sparked your interest?

Prof. Lautala likes to fish, hunt, and play the accordian.

Probably my early summer internships, first at a rail construction site, and then with Finnish Railways.

Hometown?

Kangasala, Finland. I have split my life evenly between Finland and the US, twenty-five years each. I recently spent a year in Finland with my wife and two rascals (children): Olavi (10) and Ansel (8).

What do you like to do in your spare time?

Hobbies, you name it…..soccer (including coaching), hockey, golf, and many other sports. Three accordions and an equal number of bands. I’ve done some acting, too (though that’s been pretty quiet recently).

A rail adventure!

Eric, how did you first get into engineering? What sparked your interest?

I saw the Mackinac Bridge while it was under construction. A few years later when our subdivision was expanded, I spent the summer watching the grading contractor.  

Boating is another hobby. We have a 17’ boat for water skiing and a 20’ sailboat we use each summer for a few weeks on Crystal Lake near Frankfort, Michigan, when our family vacations together.

One of your most memorable accomplishments?

Training as a locomotive engineer.

Hometown?

I was born in Detroit and moved to Bloomfield Township when I was in the 4th grade. I am an only child. I married Patricia Paoli in 1970.

Eric and Pat thus far have three married adult children, and nine grandchildren.

What do you like to do in your spare time

My dad exposed me to both model railroading and real railroads. My primary hobby is model railroading in O Scale 2 rail, which is 1/48 scale. My work was all in the railroad industry.

Read more:

See Tracks? Think Train!

The Michigan Department of Transportation and Michigan Operation Lifesaver are partnering together to raise rail safety awareness. Most Americans today know the dangers associated with drunk driving, distracted driving or texting while crossing the street, But many are unaware of the risks they are taking around railroad tracks.

Environmental Engineering Presentations at AEESP 2022

Environmental Engineering at the Confluence AEESP St. Louis 2022

Rose Daily and Benjamin Barrios, both PhD students in environmental engineering, traveled to St. Louis with their advisor, Daisuke Minakata (CEGE). They attended the Association of Environmental Engineering and Science Professors (AEESP) Conference on June 28-30, where they presented their research findings.

Daily gave her podium presentation about advanced reduction technology for the remediation of organic contaminants in water including per- and poly-fluoroalkyl substances (PFAS). Barrios presented a poster about an aquatic photochemistry project supported by the National Science Foundation.

The AEESP Research and Education Conference addresses the most critical environmental challenges of this era. Its theme, “Environmental Engineering and Science at the Confluence,” is designed to span the field of environmental engineering, to explore convergence and to highlight emerging developments.