Analyzing the Behavior of Light in New Zealand

Mitch Kirby at Westland Tai Poutini National Park, New Zealand
Mitch Kirby at Westland Tai Poutini National Park, New Zealand

The natural beauty and easy access to both snowboarding and surfing first attracted Mitch Kirby to New Zealand—that, and the legendary fly fishing. Kirkby was a sophomore majoring in biomedical engineering at Michigan Technological University when he received a Whitaker International Student Fellowship at the University of Otago in Dunedin, New Zealand.

“One of my professors at Michigan Tech, Dr. Sean Kirkpatrick, told me about the Biophotonics and Biomedical Imaging Research Group at the University of Otago. As I learned more about New Zealand, everything sort of seemed to line up.”

Kirby worked with a group focused on light/tissue interaction. “As light propagates through biological tissue, the light waves exhibit different behavior based on the internal characteristics of the tissue,” Kirby explains. “Ultimately the goal of the project was to gather enough experimental data on the different light-tissue interactions so that down the road it would be possible to use a light-emitting device to make medical diagnostic decisions non-invasively. While the project was in the early stages, most of my time in the lab was spent lining up the different lenses and filters for the experiments with elliptically-polarized light. Later we began writing code on MATLAB and analyzing the behavior of the light.”

Kirby’s everyday life in Dunedin involved getting up very early, completing schoolwork and attending classes. After spending a few hours in the lab, he would finish up for the day around 3 pm. If the waves were good, he would surf. If not, he would explore the countryside. During the weekends, he traveled with a small group of friends to different locations throughout New Zealand. Trips usually involved snowboarding, backpacking, and just general adventuring.

Mitch Kirby crosses the Copeland Valley in Westland Tai Poutini National Park, New Zealand
Mitch Kirby crosses the Copeland Valley in Westland Tai Poutini National Park, New Zealand

“Spending time overseas definitely opened my eyes to the ability of a college education to take you places,” says Kirby. “Traveling and living abroad while studying and working in the lab showed me that it is possible to mix work and play so that each day is an enjoyable one,” he adds. “I also enjoyed the excitement of working on a research project that could potentially change the way many medical diagnoses are made. There is a great deal of potential in the continued advancement of biomedical optics. My ultimate goal is to develop new technologies through academic research.”

Working with people in the lab from different backgrounds was a high point for Kirby as well. “Everyone had something unique to bring to the table, particularly because we all came from different countries and cultures.”

Michigan Tech biomedical engineering student Mitch Kirby surfs in New Zealand. "Traveling and living abroad while studying and working in the lab showed me that it is possible to mix work and play so that each day is an enjoyable one.”
Michigan Tech biomedical engineering student Mitch Kirby surfs in New Zealand. “Traveling and living abroad while studying and working in the lab showed me that it is possible to mix work and play so that each day is an enjoyable one.”

Once back in Michigan Tech, Kirby returned to the optics lab at Michigan Tech to investigate Optical Coherence Tomography as an undergraduate researcher.

Mitch Kirby earned a BS in Biomedical Engineering from Michigan Tech in 2016. The same year he received a National Science Foundation Graduate Research Fellowship and is now a doctoral student in Bioengineering and Biomedical Engineering at the University of Washington in Seattle.

Sponsored Libre Research Agreements to Create Free and Open Source Software and Hardware

Joshua Pearce (MSE/ECE) published, “Sponsored Libre Research Agreements to Create Free and Open Source Software and Hardware” in the journal Inventions. This article has a pre-approved template appendix that will be useful for Michigan Tech faculty doing sponsored research for open source companies and those wishing to save legal resources for Tech and firms with which they collaborate by streamlining negotiations for projects that do not follow a conventional IP approach.

Inventions 2018, 3(3), 44; doi:10.3390/inventions3030044

Agreement for Sponsored Libre Research at Michigan Tech

Open Source Articles Indexed per Year go up by orders of magnitude
Open Source Articles Indexed per Year

Detroit Students Introduced to STEM and Environmental Science Careers

Environmental CareersFifteen high school students from Detroit and southeast Michigan are exploring natural resources and engineering majors and possible careers at Michigan Tech this week. This is the fourth year that the program has been conducted in conjunction with Tech’s Summer Youth Program.

The students are investigating drinking water treatment, autonomous vehicles, drones, forest biomaterials, soils, wildlife and more with Michigan Tech scientists from mechanical engineering and electrical engineering along with experts from the Michigan DNR and U.S. Forest Service.

The program is coordinated by the Michigan Tech Center for Science and Environmental Outreach, with funding from Michigan Tech’s School of Forest Resources and Environmental Science, College of Engineering, Admissions, Housing and Residential Life, Great Lakes Research Center and the Center for Diversity and Inclusion.

By Joan Chadde.

City students learn environmental values during career tour at Tech

HOUGHTON — A group of 13 high school students from Detroit and southeast Michigan spent last week getting a firsthand look at the Copper Country and environmental and engineering programs at Michigan Tech.

Student often come to the program with ideas of careers they are interested in, and many of them aren’t focused on natural resources or ecology, said Lisa Perez from the US Forest Service Urban Connections. However, they typically walk away from the program with new ideas and shifted focus.

Perez and Mike Reed of the Detroit Zoological Society have worked with the students since the program began four years ago.

“It opened their eyes, maybe not to a totally different career path, but it opened their eyes to the fact that they are responsible for the future of the environment,” said Reed.

Read more at the Mining Gazette, by Garrett Neese.

Joshua Pearce on At-home Manufacturing

3D PrintingAn article written by Joshua Pearce (MSE/ECE) for The Conversation, Trade wars will boost digital manufacturing – at consumers’ own homes with personal 3D printers, was picked up by the Associated Press and published widely in several newspapers, including the San Francisco Chronicle, Chicago Tribune, San Antonio Express, Times Union in New York and others. The story was covered on WTOP radio in Washington, D.C. and on TEGNA Broadcast Media (46 television stations covering 50 million people).

Pearce is quoted in an article regarding the Michigan Tech student developed recycling system: Equipment spotlight: Boost for at-home filament extrusion, in Plastics Recycling Update.

In the News

An article written by Joshua Pearce (MSE/ECE) was reprinted by khou.com, the Times UnionFinancial SenseWorld News and several other media outlets.

Joshua Pearce (MSE/ECE) was quoted in the article “3D printing news Sliced Siemens, ExOne, Stratasys, Massivit, CELLINK, Formlabs, Star Rapid,” 3dprintingindustry.com.

Pearce was interviewed on National Public Radio (NPR) for “3D Printing is Turning the Economics of Scale on its Head.” You can listen to the interview here.

Pearce writing on the trade wars and 3D printing was covered by Salon.

DENSO STEM Grant for Michigan Tech

DENSO sign outside the facilityMichigan Tech was listed among the 25 institutions of higher learning that shared in nearly $1 million in funding from DENSO International America, Inc.

DENSO Awards $1 Million in STEM Grants to 25 North American Colleges

DENSO, one of the world’s largest automotive suppliers of technology and components, announced that its philanthropic arm will donate nearly $1 million in overall funding to 25 institutions of higher learning across North America to support science, technology, engineering and math (STEM) educational programming.

“Manufacturing and automotive companies need technically-minded associates now more than ever,” said David Cole, DENSO North American Foundation board member.

Read more at Fleet News Daily.

Michigan Tech will host the 2018 ASISC Annual Meeting, August 7-10

Lab07112014066

Michigan Tech’s Advanced Sustainable Iron and Steelmaking Center (ASISC) will host its annual meeting in Houghton, in this August 7-10, 2018. The ASISC annual meeting is a gathering of professionals from the mining and mineral processing industry. New Paradigms in Mineral Processing Technologies is this year’s theme.

ASISC members pool resources to address a diverse spectrum of interdisciplinary research questions. During the meeting they share their work and experiences to further the development of a new generation of sustainable, economical mineral processing technologies.

On August 7-8, the ASISC Fundamentals of Minerals Processing Short Course will provide a general introduction to practical minerals processing. The course includes both lecture and laboratory demonstrations. Topics are tailored to attendee needs and requests. Hands-on laboratory work, performed by registered members, is the highlight of this course. The short course will be located on the Michigan Tech campus in the Department of Chemical Engineering

On August 9-10, industry leaders and research engineers will deliver mineral processing research presentations at the Magnuson Hotel in downtown Houghton, a 10 minute walk from campus.

Learn more and register online here.

Timothy Havens Publishes on Fuzzy Adaptive Extended Kalman Filter

International Journal of Intelligent Unmanned Systems coverHanieh Deilamsalehy (ECE) and Timothy Havens (ECE/CS) published a paper entitled, “Fuzzy adaptive extended Kalman filter for robust 3D pose estimation,” in the International Journal of Intelligent Unmanned Systems, vol. 6, no. 2, pp. 50-68.

doi.org/10.1108/IJIUS-12-2017-0014

Timothy Havens is the William and Gloria Jackson Associate Professor of Computer Systems in the Department of Electrical and Computer Engineering and the director of the Center for Data Sciences (DataS). DataS is part of ICC, the Institute of Computing & Cybersystems at Michigan Tech.

Hanieh Deilamsalehy, who graduated in 2017 with a PhD in Electrical Engineering from Michigan Tech, is working at Microsoft.

Purpose

Estimating the pose – position and orientation – of a moving object such as a robot is a necessary task for many applications, e.g., robot navigation control, environment mapping, and medical applications such as robotic surgery. The purpose of this paper is to introduce a novel method to fuse the information from several available sensors in order to improve the estimated pose from any individual sensor and calculate a more accurate pose for the moving platform.

On the Road

Tim Havens (ECE/CS) presented a paper entitled, “SPFI: Shape-Preserving Choquet Fuzzy Integral for Non-Normal Fuzzy Set-Valued Evidence,” this month at the IEEE World Congress on Computational Intelligence (IEEE WCCI 2018)in Rio de Janeiro. Havens also co-authored two other papers presented at the conference. WCCI is the biennial meeting of the three leading computational intelligence conferences: International Conference on Fuzzy Systems, International Joint Conference on Neural Networks, and Congress on Evolutionary Computation. Co-authors on the paper were Tony Pinar (ECE), Derek Anderson (U. Missouri) and Christian Wagner (U. Nottingham, UK). As general chair of the Int. Conf. Fuzzy Systems 2019 in New Orleans, Havens also presented a pitch for the upcoming event at the WCCI awards banquet. The conference took place July 8-13, 2018.

Additionally, Havens presented an invited seminar, “How to Win on Trivia Night: Sensor Fusion Beyond the Weighted Average,” at MIT Lincoln Laboratory on July 16.

Engineers on the Alumni Board of Directors

Husky Statue with people in the backgroundAlumni Engagement extends a warm welcome to the new members of the Alumni Board of Directors who begin their six-year terms July 1, 2018. This group of volunteers was elected from around the country to support the mission of “Celebrating Traditions. Creating Connections.”

The Board works with the Alumni Engagement team to develop and support programs for students and alumni.

There are eight new members, five of whom are engineers.

  1. Britta Anderson ’15 Electrical Engineering, Kalamazoo, Michigan
  2. Timothy Hartwig ’97 Environmental Engineering, Centennial, Colorado
  3. Jackie Jiran ’96 Civil Engineering, Carver, Minnesota
  4. Scott McBain ’86 Civil Engineering, Rochester Hills, Michigan
  5. Elizabeth Merz ’17 Chemical Engineering, Hudsonville, Michigan
  6. Adam Mitteer ’03 ‘17 Data Science Business Administration, Tampa, Florida
  7. Hannah (Bosseler) North ’16 App. Cognitive Sciences & Human Factors, Two Rivers, Wisconsin
  8. Andrew VanDyke ’11 Forestry, Marquette

The Board will meet on campus August 2-3 during Alumni Reunion.

Alex Mayer is the First University Professor

Alex S. Mayer
University Professor Alex S. Mayer

Last September, University President Glenn Mroz and Jackie Huntoon, provost and vice president for academic affairs, announced the establishment of two new titles created to recognize outstanding faculty: Distinguished Professor and University Professor.

The University Professor title recognizes faculty members who have made outstanding scholarly contributions to the University and their discipline over a substantial period of time.

Alex Mayer was selected as the first University Professor.

Mayer is the Charles and Patricia Nelson Presidential Professor in the Department of Civil and Environmental Engineering. He has been at Michigan Tech since 1991 with a joint appointment in the Department of Geological Engineering and Sciences. Mayer was the co-founder and first director of the Michigan Tech Center for Water and Society. He teaches about environmental resources engineering and management. Recent research activity on collaborative solutions to water scarcity in semi-arid environments, hydro-economic modeling for watershed management, sea level rise impacts on island nations has been funded by the National Science Foundation and the US Department of Agriculture.

Mayer is frequently recognized for his outstanding efforts to bring water-related research, education and outreach to the forefront at Michigan Tech. For his dedication to studying water quality and scarcity—and his unique approach to these complex problems—Mayer won Michigan Tech’s 2015 Research Award. In 2009, Mayer was recognized with the Rudolf Hering Medal from the American Society of Civil Engineers. In the same year, he also received Michigan Tech’s Distinguished Faculty Service Award. Collaboration is a hallmark of Mayer’s research methods. He works across disciplines with academics, government, non-governmental organizations, and community stakeholders.

The confidential process for selecting recipients spans the academic year and recipients for each award were notified in May. A University Professor is recognized for their exemplary research, major invited lectures, prestigious awards, significant contributions to the advancement of their field, and other criteria. They are nominated by faculty members, departments, programs, or schools. University Professors will not exceed two percent of the total number of tenured and tenure-track faculty at Michigan Tech at any time.

Kamath and Minakata Model an Advanced Oxidation Process

Daisuke Minakata
Daisuke Minakata

Daisuke Minakata has published “Emerging Investigators series: Ultraviolet and free chlorine aqueous-phase advanced oxidation process: kinetic simulations and experimental validation,” in Environmental Science: Water Research and Technology with Divya Kamath.

DOI:10.1039/C8EW00196K

Extract

An emerging advanced oxidation process uses ultraviolet light and free chlorine to produce active hydroxyl radicals and chlorine-derived radicals to degrade a variety of organic compounds in water. We developed a UV/free chlorine elementary reaction-based kinetic model for a test compound, acetone, and its transformation products. The elementary reaction pathways were predicted by quantum mechanical calculations, and the reaction rate constants were predicted using previously developed linear free energy relationships.

This article is part of the themed collections: Ultraviolet-based Advanced Oxidation Processes (UV AOPs) and Emerging Investigator Series.

Related:

Break It Down: Understanding the Formation of Chemical Byproducts During Water Treatment

Elucidating the Elementary Reaction Pathways and Kinetics of Hydroxyl Radical-Induced Acetone Degradation in Aqueous Phase Advanced Oxidation Processes