Category: Announcements

Computing Awards COVID-19 Research Seed Grants

Michigan Tech College of Computing

The College of Computing is pleased to announce that it has awarded five faculty seed grants, which will provide immediate funding in support of research projects addressing critical needs during the current global pandemic.

Tim Havens, College of Computing associate dean for research, said that the faculty seed grants will enable progress in new research that has the potential to make an impact on the current research. Additional details will be shared soon.

Congratulations to the winning teams!

Guy Hembroff (AC, HI): “Development of a Novel Hospital Use Resource Prediction Model to Improve Local Community Pandemic Disaster Planning”

Leo Ureel (CS) and Charles Wallace (CS): “Classroom Cyber-Physical Simulation of Disease Transmission”

Bo Chen (CS): “Mobile Devices Can Help Mitigate Spreading of Coronavirus”

Nathir Rawashdeh (AC, MERET): “A Tele-Operated Mobile Robot for Sterilizing Indoor Space Using UV Light” (A special thanks to Paul Williams, who’s generous gift to support AI and robotics research made this grant possible)

Weihua Zhou (AC, HI) and Jinshan Tang (AC, MERET): “KD4COVID19: An Open Research Platform Using Feature Engineering and Machine Learning for Knowledge Discovery and Risk Stratification of COVID-19″

Meet Bonnie Henderson, Data Science Master’s Student and CCLC Coach

By Karen S. Johnson, Communications Director, College of Computing

Data Science graduate student Bonnie Henderson began her master’s degree at Michigan Tech in fall 2019. From Jarrell, Texas, Henderson earned a B.A. in mathematics and French at Southwestern University, Georgetown, Texas.

Henderson is a recipient of Michigan Tech’s David House Family Fellowship, which she describes as a great honor. Her research interests are in artificial intelligence and machine learning.

“The fellowship has made an incredible difference in my life,” Henderson says. “As the first person in my family to go to college, it is an amazing opportunity to pursue my graduate studies fully funded.”

This January, Henderson began managing the College of Computing Learning Center (CCLC), an undergraduate learning lab staffed entirely by student coaches and available to all Michigan Tech students in Computing classes.

“I mostly work to help manage the CCLC,” Henderson says. “I help tutor students in undergraduate computer science courses during CCLC walk-in hours, help run CCLC staff meetings, and when the time comes, I’ll help manage the interviewing and hiring process for new tutors.”

Many Opportunities for Learning

Henderson says her work with the CCLC often presents computer science issues and computing problems that are not always common in data science, providing her with many opportunities for learning.

“Studying data science, I work a lot with programming,” Henderson says. “However, I often work with problems related to mathematics in programming and not always the typical undergraduate programming issues.”

What Henderson likes best about tutoring is what she learns along the way. “Since I did not complete my undergraduate degree at MTU, I’m not always familiar with the problems that students are facing when they come in for tutoring. Everyone looks at a problem a little differently, and I get the opportunity to be exposed to many different thought processes and unique solutions.”

New Methods of Virtual Support

Not surprisingly, the plans for the CCLC have changed a lot since the COVID-19 pandemic began earlier this year. “Before this news, we were planning on hosting workshops and other events for students in the College of Computing and other departments, such as guided study groups, exam review sessions, and specialized support for individual classes,” Henderson says.

But since the CCLC cannot offer conventional face-to-face tutoring right now, these plans are changing and Henderson and the CCLC are responding with new methods of virtual support. “We have started sending out a weekly CCLC email to students, which shares coding tips and tricks, quizzes, and news, and we are working to encourage more student involvement, especially with the current difficulties we are all facing,” Henderson explains.

Balancing Life, Work and School

So, instead of hosting face-to-face events, CCLC walk-in hours are now being hosted through Zoom, and the Learning Center is maintaining a Canvas page where students can find help and find information on their own. They also hope to host some virtual workshops soon. Students can sign up for the CCLC Canvas page here: https://mtu.instructure.com/enroll/KWFTJ9.

Henderson says the most challenging thing about balancing life, work, and school is finding a separate time and place for each one.

“I’ll often be looking at one thing, and something in it reminds me of a problem from something else. I have a tendency to hop around a lot, and sometimes things may get lost,” she says. “It has become increasingly difficult working and studying from home, as everything is now sharing the same physical space.”

To help with that, Henderson says it’s helpful to try to have different spaces for the things she has to do. “Like one chair for working and another chair for schoolwork, even if they are in the same room. Some sort of distancing between everything is definitely needed.”

Learn More About the CCLC

Visit the CCLC website here. Visit the CCLC’s Infinite Loop: Resources to Explore, Learn, Code, Repeat.

The Dave House graduate student assistantships provide $30,000 annually for three years to each of three graduate assistants in Michigan Tech’s Master of Science in Data Science program.

About Dave House ’65, University Friend and Donor

Dave House ’65 (EE) is a longtime friend and generous donor to Michigan Tech.

“I support Michigan Tech because I believe in the critical importance of higher education, not only for the state and the nation, but most importantly for our graduates, House says in an EE department alumni profile.

“The Fourth Industrial Revolution changes everything, and Michigan Tech is perfectly positioned to prepare our students for these changes. I support fellowships in data science because of the role that sensing, networking, big data, artificial intelligence and human/machine interfacing has in the Fourth Industrial Revolution. Supporting graduate and research activities is critical to keeping Michigan Tech agile and at the cutting edge of this revolution.”

The Data Science Master of Science

The Data Science Master of Science degree is offered jointly by the College of Engineering and the Department of Computer Science. Associate Professor Laura Brown, Computer Science, is director of the program.

Havens, Yazdanparast Publish Article in IEEE Transactions on Big Data

Timothy Havens

An article by Audrey Yazdanparast (2019, PhD, Electrical Engineering) and Dr. Timothy Havens, “Linear Time Community Detection by a Novel Modularity Gain Acceleration in Label Propagation,” has been accepted for publication in the journal, IEEE Transactions on Big Data.

The paper presents an efficient approach for detecting self-similar communities in weighted graphs, with applications in social network analysis, online commodity recommendation systems, user clustering, biology, communications network analysis, etc.

Paper Abstract: Community detection is an important problem in complex network analysis. Among numerous approaches for community detection, label propagation (LP) has attracted a lot of attention. LP selects the optimum community (i.e., label) of a network vertex by optimizing an objective function (e.g., Newman’s modularity) subject to the available labels in the vicinity of the vertex. In this paper, a novel analysis of Newman’s modularity gain with respect to label transitions in graphs is presented. Here, we propose a new form of Newman’s modularity gain calculation that quantifies available label transitions for any LP based community detection.

The proposed approach is called Modularity Gain Acceleration (MGA) and is simplified and divided into two components, the local and global sum-weights. The Local Sum-Weight (LSW) is the component with lower complexity and is calculated for each candidate label transition. The General Sum-Weight (GSW) is more computationally complex, and is calculated only once per each label. GSW is updated by leveraging a simple process for each node-label transition, instead of for all available labels. The MGA approach leads to significant efficiency improvements by reducing time consumption up to 85% relative to the original algorithms with the exact same quality in terms of modularity value which is highly valuable in analyses of big data sets.

Timothy Havens is director of Michigan Tech’s Institute of Computing and Cybersystems (ICC), the associate dean for research for the College of Computing , and the William and Gloria Jackson Associate Professor of Computer Systems.

View the article abstract here.

Ford Mobility Funds AI, Acoustics Research

Imagine if your car could tell you when you are passing by an area occupied by rare migratory birds, or it could listen to roads and bridges to determine when infrastructure repairs need to be made.

A recent gift from Mobility Research at Ford Motor Company recently provided a $149,518 gift to fund research that could make this possible.

Dr. Timothy Havens, Institute of Computing and Cybersystems, and Dr. Andrew Barnard, Great Lakes Research Center, will lead an exploration of how future connected vehicles could use AI and acoustics to detect, classify, and localize external sound events, and evaluate and monitor transportation infrastructure.

The gift will fund a Ph.D. student fellowship, a team of undergraduate students in the SENSE Enterprise, and build and develop a mobile acoustics test bed that will allow students, Havens, and Barnard to conduct cutting-edge research in AI and acoustics.

Michigan Tech would like to thank Chad Esselink (’94, Computer Science) and Tavan Eftekhar at Ford Mobility Research for making this possible.

The Institute of Computing and Cybersystems (ICC) is the research arm of the College of Computing at Michigan Tech. The ICC provides faculty and students the opportunity to work across organizational boundaries to create an environment that is a reflection of contemporary technological innovation. This collaboration allows for a convergence in communication, control and computing that mirrors today’s industry and society.

The Great Lakes Research Center (GLRC) provides state-of-the-art laboratories to support research on a broad array of topics. Faculty members from many departments across Michigan Technological University’s campus collaborate on interdisciplinary research, ranging from air–water interactions to biogeochemistry to food web relationships.

Article by Tim Havens in IEEE Transactions on Fuzzy Systems

An article co-authored by Tim Havens, associate dean for research, College off Computing, “Soft Overlapping Community Detection in Large-Scale Networks via Fast Fuzzy Modularity Maximization,” was published in the March 2020 issue of IEEE Transactions on Fuzzy Systems.

Havens’s co-authors are Audrey Yazdanparast (ECE) and Mohsen Jamalabdollahi of Cisco Systems.

Article Abstract: Soft overlapping clustering is one of the notable problems of community detection. Extensive research has been conducted to develop efficient methods for non-overlapping and crisp-overlapping community detection in large-scale networks. In this paper, Fast Fuzzy Modularity Maximization (FFMM) for soft overlapping community detection is proposed.

FFMM exploits novel iterative equations to calculate the modularity gain associated with changing the fuzzy membership values of network vertices. The simplicity of the proposed scheme enables efficient modifications, reducing computational complexity to a linear function of the network size and the number of communities. Moreover, to further reduce the complexity of FFMM for very large networks, Multi-cycle FFMM (McFFMM) is proposed.

The proposed McFFMM reduces complexity by breaking networks into multiple sub-networks and applying FFMM to detect their communities. Performance of the proposed techniques are demonstrated with real-world data and the Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks. Moreover, the performance of the proposed techniques is eval- uated versus some state-of-the-art soft overlapping community detection approaches. Results show that the McFFMM produces a remarkable performance in terms of overlapping modularity with fuzzy memberships, computational time, number of detected overlapping nodes, and Overlapping Normalized Mutual Informa- tion (ONMI).

View more info here.

Chee-Wooi Ten Awarded $25K Contract from Protect Our Power

Chee-Wooi Ten, associate professor, Electrical and Computer Engineering, and member of the ICC’s Center for Cyber-Physical Systems, was recently awarded a 6 month, $25K contract from the nonpartisan advisory panel, Protect Our Power. The title of the project is, “Consulting for Utilities on Cyber Risk Management.”

The activities Ten will undertake for the project include identifying security vendors for industrial harden security hardware and software, and conducting a survey of each of the identified security vendors to enumerate their strengths and weaknesses.

Ten will talk with vendors and utilities to understand their needs, identify product niches, and prepare a conclusion report that discusses the pros and cons of each vendor product and how each niche will contribute to general solutions for deploying security solutions for U.S. power utilities.

Project deliverables include a literature review, vendor discovery search, criteria identification and definition, comparative analysis matrix, and best practices conclusion paper.

Protect Our Power is a nonpartisan advisory panel with the single focus of strengthening the nation’s electrical power grid. The panel is composed of experts from industry, the physical and cyber defense communities, and finance and government. Its mission is to build consensus among key stakeholders and public policy influencers to launch a coordinated and adequately funded effort to make the nation’s electric grid and the country’s more than 3,000 utility companies prepared and protected against all cyberthreats.

ICC Seeks Assistant Director for Research Development

The Michigan Tech Institute of Computing and Cybersytems (ICC) has announced a search for an Assistant Director, Research Development, an administrative position.

The new position will support ICC researchers as they collectively work to create and implement activities to grow and support ICC-affiliated research and graduate programs.

By collaborating with, coaching/mentoring, and supporting the work of researchers at all levels, this individual will be integral to the business development and outreach of the ICC. The successful candidate will provide pre- and post-award support to institute members, assist with the financial processes for the institute, and help lead daily administrative functions.

View the complete position description here.

Dr. Kun Zhu of MISO to Present Lecture on U.S. Power Grid, March 2

The Institute of Computing and Cybersystems and the Department of Electrical and Computer Engineering will present a lecture by Dr. Kun Zhu on Monday, March 2, 2020, at 3:00 p.m., in EERC 501. The title of Dr. Zhu’s talk is “Power Grid Operations – Beyond Physics.

Dr. Zhu holds a Ph.D. in electrical engineering from Iowa State University. He has 20 years’ experience in the power industry, including 17 years at MISO, an independent, not-for-profit organization that delivers safe, cost-effective electric power across 15 U.S. states and the Canadian province of Manitoba.

Dr. Zhu’s presentation will provide a high level introduction to how regional operators manage the power grid in the U.S. He will discuss how energy markets and balancing authorities (those responsible for maintaining the electricity balance within their respective regions) manage their regions and interact with each other; differences in how energy and transmission assets are managed; and the function of Regional Transmission Organizations (RTO).

At MISO, Dr. Zhu’s experience expands across planning, operations, and tariff administration. Currently, he is the manager of generator interconnection and chair of the SPIDER Working Group (SPIDER), a working unit of North America Electric Reliability Cooperation (NERC).  

MISO operates one of the world’s largest energy markets with more than $29 billion in annual gross market energy transactions. 

Two Papers by Yakov Nekrich Accepted by SoCG 2020 Conference

Yakov Nekrich, associate professor, Department of Computer Science, has been notified that two scholarly papers he has authored were accepted by the 36th International Symposium on Computational Geometry (SoCG 2020), which takes place June 23-26, 2020, in Zurich, Switzerland.

Nekrich is a member of the ICC’s Center for Data Sciences.

The two papers are “Further Results on Colored Range Searching,” by Timothy M. Chan, Qizheng He, and Nekrich, and “Four-Dimensional Dominance Range Reporting in Linear Space” by Nekrich alone.

The Annual Symposium on Computational Geometry (SoCG) is an academic conference in computational geometry. Founded in 1985, it was originally sponsored by the SIGACT and SIGGRAPH Special Interest Groups of the Association for Computing Machinery (ACM). It dissociated from the ACM in 2014. Since 2015 the conference proceedings have been published by the Leibniz International Proceedings in Informatics Since 2019 the conference has been organized by the Society for Computational Geometry. (Wikipedia)

Visit the SoCG 2020 website.

Minakata, Students, Rouleau Publish Paper

The Process Safety and Environmental Protection special issue on Advanced Oxidation Process (Elsevier), has accepted for publication a paper by associate professor Daisuke Minakata (CEE), his students Robert Zupko, Divya Kamath, and Erica Coscarelli, and his collaborator and co-PI Mark Rouleau (SS), ICC Center for Data Sciences. pictured at left with Mary Raber. Photo by Daily Mining Gazette.

The paper concerns research supported by the National Science Foundation’s Chemical, Bioengineering, Environmental and Transport Systems (CBET) Division.

Grant Title: Coupling Experimental and Theoretical Molecular-Level Investigations to Visualize the Fate of Degradation of Organic Compounds in Aqueous Phase Advanced Oxidation Systems

Grant Abstract: The lack of an overarching management plan combined with uncertainty about the adverse human health and ecological impacts of trace amounts of known and emerging organic compounds have raised public concerns about water. These issues also present major challenges to next generation water treatment utilities dealing with de facto and planned wastewater reuse. Advanced oxidation processes that produce highly reactive hydroxyl radicals are promising technologies to control trace amounts of organic compounds. Although the initial fate of hydroxyl radical induced reactions with diverse organic compounds have been studied, the mechanisms that produce intermediate radicals and stable-byproducts are not well understood. Significant barriers remain in our understanding of complex multi-channel elementary reaction pathways embedded in peroxyl radical bimolecular decay that produce identical intermediate-radicals and stable-byproducts. The model developed in the course of this research will give researchers and policy makers the ability to predict the likely chemical by-products and alternative options to provide least adverse impact on the general public who will directly consume this water or other ecological organisms who will be exposed indirectly.

The proposed study will integrate three thrusts to discover the currently unknown fate of the three major degradation pathways. First, we will perform pulse-photolysis kinetic measurement to determine the temperature-dependent overall reaction rate constants for multi-channel peroxyl radical reactions. We will also measure the resulting byproducts using a mass spectrometry. Second, we will employ quantum mechanical theoretical calculations to determine the elementary reaction pathways and associated reaction rate constants. Third, we will then combine our kinetic measurements with our theoretical calculations to develop an agent-based model that will enable us to visualize and predict the fate of organic compounds. With explicitly assigned reaction rules and molecular behavior embedded within a simulated reaction network, the resulting agent-based model will use software agents to represent radical species and organic compounds and then simulate their interactions to predict corresponding consequences (i.e., byproducts) over time and space. Finally, experimental observations will validate the outcomes from the agent-based model.

The Chemical, Bioengineering, Environmental and Transport Systems (CBET) Division supports innovative research and education in the fields of chemical engineering, biotechnology, bioengineering, and environmental engineering, and in areas that involve the transformation and/or transport of matter and energy by chemical, thermal, or mechanical means.

View additional grant info on the NSF website.

Find more information about the Process Safety and Environmental Protection special issue on Advanced Oxidation Process here.