Category: Research

Soner Onder Receives Year One Funding for $1.2M NSF SCALE Project

Soner Onder
Dave Whalley

Soner Onder, professor of computer science, was recently awarded $246,329 for the first year of a four-year NSF grant for his project, “SHF: Medium: Collaborative Research: Statically Controlled Asynchronous Lane Execution (SCALE).” The project is in collaboration with Prof. David Whalley of Florida State University. Michigan Tech is the lead institution in the project, it is expected to total $1.2 million, with Michigan Tech receiving $600,000.

Abstract: Enabling better performing systems benefits applications that span those running on mobile devices to large data applications running on data centers. The efficiency of most applications is still primarily affected by single thread performance. Instruction-level parallelism (ILP) speeds up programs by executing instructions of the program in parallel, with ‘superscalar’ processors achieving maximum performance. At the same time, energy efficiency is a key criteria to keep in mind as such speedup happens, with these two being conflicting criteria in system design. This project develops a Statically Controlled Asynchronous Lane Execution (SCALE) approach that has the potential to meet or exceed the performance of a traditional superscalar processor while approaching the energy efficiency of a very long instruction word (VLIW) processor. As implied by its name, the SCALE approach has the ability to scale to different types and levels of parallelism. The toolset and designs developed in this project will be available as open-source and will also have an impact on both education and research. The SCALE architectural and compiler techniques will be included in undergraduate and graduate curricula.

The SCALE approach supports separate asynchronous execution lanes where dependencies between instructions in different lanes are statically identified by the compiler to provide inter-lane synchronization. Providing distinct lanes of instructions allows the compiler to generate code for different modes of execution to adapt to the type of parallelism that is available at each point within an application. These execution modes include explicit packaging of parallel instructions, parallel and pipelined execution of loop iterations, single program multiple data (SPMD) execution, and independent multi-threading.

This award reflects NSF’s statutory mission and has been deemed worthy of support through evaluation using the Foundation’s intellectual merit and broader impacts review criteria.

Keith Vertanen and Scott Kuhl Awarded $500K NSF Grant

Scott Kuhl
Scott Kuhl
Keith Vertanen
Keith Vertanen

Keith Vertanen, assistant professor of computer science (HCC), and Scott Kuhl (HCC), associate professor of computer science, are principal investigators of a recently funded three-year National Science Foundation grant for their project, “CHS: Small: Rich Surface Interaction for Augmented Environments.” The expected funding over three years is $499,552.00.

Vertanen and Kuhl are members of Michigan Tech’s Institute of Computing and Cybersystems (ICC) Center for Human-Centered Computing. A 2018 ICC research seed grant funded by ECE Alumnus Paul Williams was used to produce some of the preliminary results in the successful proposal. More info about the Williams Seed Grant can be found here:

A related video can be found here:

Abstract: Virtual Reality (VR) and Augmented Reality (AR) head-mounted displays are increasingly being used in different computing related activities such as data visualization, education, and training. Currently, VR and AR devices lack efficient and ergonomic ways to perform common desktop interactions such as pointing-and-clicking and entering text. The goal of this project is to transform flat, everyday surfaces into a rich interactive surface. For example, a desk or a wall could be transformed into a virtual keyboard. Flat surfaces afford not only haptic feedback, but also provide ergonomic advantages by providing a place to rest your arms. This project will develop a system where microphones are placed on surfaces to enable the sensing of when and where a tap has occurred. Further, the system aims to differentiate different types of touch interactions such as tapping with a fingernail, tapping with a finger pad, or making short swipe gestures.

This project will investigate different machine learning algorithms for producing a continuous coordinate for taps on a surface along with associated error bars. Using the confidence of sensed taps, the project will investigate ways to intelligently inform aspects of the user interface, e.g. guiding the autocorrection algorithm of a virtual keyboard decoder. Initially, the project will investigate sensing via an array of surface-mounted microphones and design “surface algorithms” to determine and compare the location accuracy of the finger taps on the virtual keyboard. These algorithms will experiment with different models including existing time-of-flight model, a new model based on Gaussian Process Regression, and a baseline of classification using support vector machines. For all models, the project will investigate the impact of the amount of training data from other users, and varying the amount of adaptation data from the target user. The project will compare surface microphones with approaches utilizing cameras and wrist-based inertial sensors. The project will generate human-factors results on the accuracy, user preference, and ergonomics of interacting midair versus on a rigid surface. By examining different sensors, input surfaces, and interface designs, the project will map the design space for future AR and VR interactive systems. The project will disseminate software and data allowing others to outfit tables or walls with microphones to enable rich interactive experiences.

Michigan Ag News Headlines: Found in Translation at Michigan Tech

James Bialas does an aerial drone demonstration for students attending the Surveying Summer Youth Program exploration at Michigan Technological University. Drones are one tool in the remote sensing arsenal. Image Credit: Peter Zhu

Research conducted by Michigan Tech doctoral candidate James Bialas and faculty members Thomas Oommen (DataS/GMES/CEE) and Timothy Havens (DataS/CS) made news in the Michigan Ag Connection, August 7, 2019. The item is a re-posting of the Michigan Tech Unscripted article, “Found in Translation, which was posted on the Michigan Tech website July 12, 2019.

ICC Members Secure Contract from MIT Lincoln Laboratory

Tim Havens
Timothy Schulz
Tim Schulz

Timothy Havens (DataS) and Timothy Schulz (DataS) were recently awarded a $15,000 contract from MIT Lincoln Laboratory to investigate signal processing for active phased array systems with simultaneous transmit and receive capability. While this capability offers increased performance in communications, radar, and electronic warfare applications, the challenging aspect is that a high-level of isolation must be achieved between the transmit and receive antennas in order to mitigate self-interference in the array. This project spearheads a collaboration with Dr. Jon Doane (BS and MS from MTU) in MIT Lincoln Laboratory’s RF Technology Group. Ian Cummings, an NSF Graduate Research Fellow who is co-advised by Havens and Schulz, is undertaking this research for his PhD dissertation and will spend the summers at MIT Lincoln Laboratory as part of the project.

Jeremy Bos Awarded Young Investigator Research Program Grant

Only 58 scientists and engineers were invited to join the Air Force’s Young Investigator Research Program (YIP) this year. Jeremy Bos (DataS) is the recipient of this prestigious award. The three-year YIP grant is for his project entitled, “Imaging Theory and Mitigation in Extreme Turbulence-Induced Anisoplanatism.”  This project will explore the nature of imaging in conditions characterized by extreme anisoplanatism.  Under these conditions each point in an image may be affected by a locally unique blurring kernel implying a violation of the linear shift invariance. Bos and his students will use a combination analysis and extensive experimental data to develop new models and new understanding of this phenomenon. Bos has also proposed using angular diversity as a means of mitigating the effects of extreme anisoplanatism on imaging and beam control problems.

Read more on Michigan Tech News.