Also In This Section
  • Categories

  • Recent News

  • Tag: FY20

    Thomas Oommen Presents Lecture at TRB Annual Meeting

    Members of the Michigan Tech Transportation Institute (MTTI) were active at the

    Among the many Michigan Tech students and faculty who attended and presented at the 2020 Transportation Research Board (TRB) Annual Meeting held recently in Washington, DC. was Thomas Oommen (GMES), who gave a lecture on “Remote terrain Strength for Mobility Characterization” at the meeting’s lectern Session 1384: Integration of Remote Sensing Techniques and Classical Instrumentation. Oommen is a member of the ICC’s Center for Data Sciences.

    The Transportation Research Board (TRB) 99th Annual Meeting was held January 12–16, 2020, in Washington, D.C. More than 13,000 transportation professionals from around the world were expected to attendd.

    The meeting program covered all transportation modes, with more than 5,000 presentations in nearly 800 sessions and workshops, addressing topics of interest to policy makers, administrators, practitioners, researchers, and representatives of government, industry, and academic institutions. A number of sessions and workshops focused on the spotlight theme for the 2020 meeting: A Century of Progress: Foundation for the Future.

    Learn more about the TRB.

    Read the full Tech Today On the Road article.


    Minakata, Students, Rouleau Publish Paper

    The Process Safety and Environmental Protection special issue on Advanced Oxidation Process (Elsevier), has accepted for publication a paper by associate professor Daisuke Minakata (CEE), his students Robert Zupko, Divya Kamath, and Erica Coscarelli, and his collaborator and co-PI Mark Rouleau (SS), ICC Center for Data Sciences. pictured at left with Mary Raber. Photo by Daily Mining Gazette.

    The paper concerns research supported by the National Science Foundation’s Chemical, Bioengineering, Environmental and Transport Systems (CBET) Division.

    Grant Title: Coupling Experimental and Theoretical Molecular-Level Investigations to Visualize the Fate of Degradation of Organic Compounds in Aqueous Phase Advanced Oxidation Systems

    Grant Abstract: The lack of an overarching management plan combined with uncertainty about the adverse human health and ecological impacts of trace amounts of known and emerging organic compounds have raised public concerns about water. These issues also present major challenges to next generation water treatment utilities dealing with de facto and planned wastewater reuse. Advanced oxidation processes that produce highly reactive hydroxyl radicals are promising technologies to control trace amounts of organic compounds. Although the initial fate of hydroxyl radical induced reactions with diverse organic compounds have been studied, the mechanisms that produce intermediate radicals and stable-byproducts are not well understood. Significant barriers remain in our understanding of complex multi-channel elementary reaction pathways embedded in peroxyl radical bimolecular decay that produce identical intermediate-radicals and stable-byproducts. The model developed in the course of this research will give researchers and policy makers the ability to predict the likely chemical by-products and alternative options to provide least adverse impact on the general public who will directly consume this water or other ecological organisms who will be exposed indirectly.

    The proposed study will integrate three thrusts to discover the currently unknown fate of the three major degradation pathways. First, we will perform pulse-photolysis kinetic measurement to determine the temperature-dependent overall reaction rate constants for multi-channel peroxyl radical reactions. We will also measure the resulting byproducts using a mass spectrometry. Second, we will employ quantum mechanical theoretical calculations to determine the elementary reaction pathways and associated reaction rate constants. Third, we will then combine our kinetic measurements with our theoretical calculations to develop an agent-based model that will enable us to visualize and predict the fate of organic compounds. With explicitly assigned reaction rules and molecular behavior embedded within a simulated reaction network, the resulting agent-based model will use software agents to represent radical species and organic compounds and then simulate their interactions to predict corresponding consequences (i.e., byproducts) over time and space. Finally, experimental observations will validate the outcomes from the agent-based model.

    The Chemical, Bioengineering, Environmental and Transport Systems (CBET) Division supports innovative research and education in the fields of chemical engineering, biotechnology, bioengineering, and environmental engineering, and in areas that involve the transformation and/or transport of matter and energy by chemical, thermal, or mechanical means.

    View additional grant info on the NSF website.

    Find more information about the Process Safety and Environmental Protection special issue on Advanced Oxidation Process here.


    Technical Paper by Nathir Rawashdeh Accepted for SAE World Congress

    An SAE technical paper, co-authored by Nathir Rawashdeh, assistant professor, CMH Division, College of Computing, has been accepted for publication at the WCX SAE World Congress Experience, April 21-23, 2020, in Detroit, MI.  The title of the paper is “Mobile Robot Localization Evaluations with Visual Odometry in Varying Environments using Festo-Robotino.” 

    Abstract: Autonomous ground vehicles can use a variety of techniques to navigate the environment and deduce their motion and location from sensory inputs. Visual Odometry can provide a means for an autonomous vehicle to gain orientation and position information from camera images recording frames as the vehicle moves. This is especially useful when global positioning system (GPS) information is unavailable, or wheel encoder measurements are unreliable. Feature-based visual odometry algorithms extract corner points from image frames, thus detecting patterns of feature point movement over time. From this information, it is possible to estimate the camera, i.e. the vehicle’s motion. Visual odometry has its own set of challenges, such as detecting an insufficient number of points, poor camera setup, and fast passing objects interrupting the scene. This paper investigates the effects of various disturbances on visual odometry. Moreover, it discusses the outcomes of several experiments performed utilizing the Festo-Robotino robotic platform. The experiments are designed to evaluate how changing the system’s setup will affect the overall quality and performance of an autonomous driving system. Environmental effects such as ambient light, shadows, and terrain are also investigated. Finally, possible improvements including varying camera options and programming methods are discussed.

    Learn more.


    Guy Hembroff Awarded CCISD Contract for CTE Cybersecurity Course

    Guy Hembroff, associate professor, CMH Division, and director of the Health Informatics graduate program and the Institute of Computing and Cybersystem’s Center for Cybersecurity, is the principal investigator on a one-year project that has been awarded a $40,000 contract from the Copper Country Intermediate School District (CCISD). The project is titled “Cybersecurity Course for Career and Technical Education (CTE) Program.”

    The CCISD CTE program provides courses and labs to high school-age students from Baraga, Houghton, and Keweenaw counties. It is intended to provide the academic background, technical ability, and work experience that today’s youth will need to succeed in today’s changing job market.

    The contract funds instructor time, use of facilities, labs, and equipment, and materials and supplies. Student enrolled in the program meet on Michigan Tech’s campus for two hours per day, Monday through Friday, from September to May. 

    The CTE Cybersecurity course covers topics including security architecture, cryptographic systems, security protocols, and security management tools. Students also learn about virus and worm propagation, malicious software scanning, cryptographic tools, intrusion detection, DoS, firewalls, best practices, and policy management.

    Learn more about the CCISD CTE program at: https://www.copperisd.org/career-technical-education.


    Kuilin Zhang Awarded $58K Contract

    Kuilin Zhang (CEE/MTTI), a member of the ICC’s Center for Cyber-Physical Systems, is the principal investigator on a project that has received a $58,556 research and development contract from the University of Illinois Urbana Champaign. The one-year project is entitled, “Leveraging Connected Highway Vehicle Platooning Technology to Improve the Efficiency and Effectiveness of Train Fleeting.”


    From the ICC Director: Reflections and Goals

    Dear ICC Members and Friends,

    Happy New Year! As we begin the new year and the Spring 2020 semester, I wanted to offer some reflections about the 2019 and share some goals for 2020.

    For the ICC, the past six months have been thrilling, to say the least. The number of new awards is far above last year, with over $2 million in new projects to-date. And ICC research expenditures are on track for a record year. Thank you to everyone for all your hard work in developing collaborations, writing proposals, winning awards, executing your exciting research, mentoring, advising, and so much more.

    The launch of Michigan Tech’s new College of Computing is such a fantastic opportunity. With this shift, we boldly announce that computing is a major field of study and not just an underpinning to other disciplines. I see the new College as a place of opportunity to experiment, collaborate, develop new pedagogies, and become a model for other institutions of higher learning. Our team is strong and creative, and it’s fun working on this puzzle with them.”

    As the ICC is the research arm of the College of Computing, we are very much a part of the strategic vision for research in the College. This integration allows us to best utilize the finite resources of both the College of Computing and the ICC to realize the greatest return on key investments in people and resources.

    To further support our members, the ICC has secured donor funding  that will make it possible to hire two key personnel in 2020. First, a search for a full-time assistant director for research development is underway. This new position will support ICC researchers as they collectively work to create and implement activities aimed at the growth and development of ICC-affiliated research and graduate programs, including pre- and post-award support, assisting with the financial processes of the institute, and helping to lead the daily administrative functions of the institute. We will also be starting a search soon for the first full-time Research Scientist in the ICC. More details on these hires will made public soon.

    I’m very much looking forward to working with all of you in the new year.

    Timothy C. Havens
    Director, Institute for Computing and Cybersystems


    Tomorrow Needs Seminar: Homin Song, Thurs., Jan. 23, 4 pm

    Homin Song, a postdoctoral researcher at Argonne National Laboratory, will present a lecture on Thursday, January 23, 2020, at 4:00 p.m., in EERC 103.

    The lecture is part of the Mechanical Engineering-Engineering Mechanics Graduate Seminar Speaker Series. It is presented in part by the Tomorrow Needs Faculty and Scientist Seminar Series sponsored by the Michigan Tech colleges of Computing, Engineering, and Sciences and Arts, Great Lakes Research Center, and Institute of Computing and Cybersystems. Learn more at mtu.edu/icc/seminars.

    Homin’s research interests lie in nondestructive evaluation (NDE) and structural health monitoring (SHM) based on ultrasonic wave motion. His broad spectrum of expertise encompasses the topical areas of NDE/SHM, such as advanced ultrasound sensing technology, signal/data processing, numerical modeling, and experimental solid mechanics. His current postdoctoral research aims at developing a super-resolution non-contact ultrasonic array imaging technique via deep learning.

    Song completed a Ph.D. in civil engineering at University of Illinois at Urbana-Champaign in 2019. He holds an M.S. degree from Korea Advanced Institute of Science and Technology (KAIST) and a B.S. from Hanyang University, also in civil engineering.

    Homin was awarded the Student Best Paper Award at the 2017 International Workshop on Structural Health Monitoring, the Student Award for Research on NDT from American Concrete Institute, and the Outstanding Paper Award from the Korean Society of Civil Engineers. 

    Abstract: Nondestructive evaluation (NDE) and structural health monitoring (SHM) systems are essential for today’s modern structures to ensure their long-term performance and reduced maintenance cost. The talk will present two full-field high-resolution ultrasonic imaging approaches to detect, image, and characterize internal damage in various materials and structural elements. The first approach is a near-field imaging technique via noncontact ultrasonic scanning measurements. Development of novel ultrasonic scanning hardware, numerical and experimental wave mechanics study to understand complicated wave scattering, and wavefield data processing are presented. A unique application of the developed approach to large-scale concrete structures under realistic damage-promoting environments is also presented. The second approach is a far-field imaging technique based on deep learning. A novel hierarchical multi-scale deep learning approach designed to image subtle structural defects is presented. The results are compared with those obtained by a widely accepted high-resolution imaging technique, Time-reversal MUSIC. 

    Download


    ECE’s Tony Pinar Joins ICC

    The Institute of Computing and Cybersystems (ICC) is pleased to welcome Tony Pinar as a member. Pinar’s primary research interests are in applied machine learning and data fusion. A lecturer in Michigan Tech’s Electrical and Computer Engineering department, Pinar holds a Ph.D. and M.S. in Electrical Engineering from Michigan Tech. His previous positions include research engineer for Michigan Tech’s Advanced Power System Research Center and electrical design engineer for GE Aviation. He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and the IEEE Computational Intelligence Society.

    Pinar’s teaching interests include machine learning, signal processing, and electronic design. Included among the classes he teaches are Electronics, Electronic Applications, Probability—Signal Analysis, and Control Systems I.

    “Teaching is like a puzzle where one may have to take a difficult concept, reduce it to digestible pieces, and deliver them to fresh minds in a way to maximize understanding and insight,” Pinar says. “That challenge is what drives me to be a better teacher.”

    Pinar believes that to be a good teacher one must understand the topics very well and he strives for the most effective delivery. “This keeps me on my toes, forces me to constantly identify holes in my knowledge, and drives me to continuously strive to learn new things,” he explains.

    On research, Pinar says it is rewarding to work on open-ended and novel problems that are in their infancy and at the cutting edge of today’s technology.

    “It is also exciting to me to watch the cutting edge move forward, see what sticks and what doesn’t, and observe how the direction(s) of the field evolve,” he adds. “I’m very new to this domain so I haven’t been able to observe it for long, but I am looking forward to witnessing the future of the field.”

    Pinar is looking forward to becoming more involved with research, and he is looking for new collaborations with other ICC and Michigan Tech researchers.

    “The resources and network the ICC provides to new—and even established—researchers are set up in a way to cultivate its members’ talent and support career pathways. I am looking forward to being a part of this dynamic Michigan Tech research institute,” Pinar says.

    Pinar’s recent publications include the following.

    M. A. Islam, D. T. Anderson, A. Pinar, T. C. Havens, G. Scott and J. M. Keller. “Enabling Explainable Fusion in Deep Learning with Fuzzy Integral Neural Networks”. IEEE Transactions on Fuzzy Systems(2019).

    U. Agrawal, A.J. Pinar, C. Wagner, T.C. Havens, D. Soria, J.M. Garibaldi. “Comparison of Fuzzy Integral-Fuzzy Measure Based Ensemble Algorithms with the State-of-the-Art Ensemble Algorithms”. International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU) (2018).

    B. Murray, M.A. Islam, A.J. Pinar, T.C. Havens, D.T. Anderson, G. Scott. “Explainable AI for Understanding Decisions and Data-Driven Optimization of the Choquet Integral”. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2018).

    A.J. Pinar, D.T. Anderson, T.C. Havens, A. Zare, T. Adeyeba. “Measures of the Shapley Index for Learning Lower Complexity Fuzzy Integrals”. SpringerGranular Computing(2017).


    Tim Havens Named Associate Dean for Research

    Timothy C.  Havens, the William and Gloria Jackson Associate Professor of Computer Systems and the director of the Institute of Computing and Cybersystems, has been appointed the associate dean for research for the College of Computing, effective immediately. 

    In his new role, Havens will encourage and enable research success in the College and promote collaborative, cross-disciplinary research and learning experiences through research support and development, communication and marketing, advancement, and College strategy and planning.

    “Tim is highly passionate about supporting research creativity and pushing the boundaries of computational knowledge.  He also has a strong history of supporting student degree completion and growing Michigan Tech’s reputation,” said Dean Adrienne Minerick, College of Computing. “For these reasons and more, he is an outstanding individual to cultivate and grow the College of Computing via independent research, collaborative research, and large team endeavors.  I am thrilled he has agreed to lead in this exciting new era of computing at Michigan Tech.”

    In his new role, Havens will collaborate with faculty and staff in identifying and pursuing research opportunities, lead and assist with College efforts to support and secure large, externally funded research awards, and work closely with the Dean, College leadership, and other constituent groups to advance the College of Computing’s reputation, research capabilities, and impact. Havens will also work to enhance communication and relationships between other units on campus surrounding computing and related research areas and contribute to College teaching needs, among other duties.

    Havens’s overarching goals for his new position encompass developing key, sustainable resources to enable research success in the College and Michigan Tech as a whole. This includes recruitment of technical research support, mentoring for new faculty and research staff, continued development of a seminar series for distinguished visitors and rising stars, and growing donor engagement in research activity.

    “My long-term goal is to develop a flourishing, sustainable culture of creativity, innovation, and education, where research is the thread of daily eagerness to move the boundaries of knowledge and to solve hard puzzles,” Havens explained. “The product of this culture will be productive, rewarded researchers who exemplify their passion for pushing the envelope to our students, our alumni, and the greater research community.”

    Havens knows that this sounds lofty and utopic, but his hope is that someday “we will all turn to each other and say, ahhhhh, this is it! This is inspiring!”

    “During his time at Michigan Tech, Tim has proven to be a dedicated and productive researcher and—most importantly—a great collaborator,” said Peter Larson, director of research development at Michigan Tech. “It has been a pleasure to work alongside Tim this academic year in the ICC. I am confident that his leadership will be a great asset to both ICC and the College of Computing in the coming years. Tim’s collaborative nature will be instrumental in bringing teams together as we seek to expand the portfolio of computing research at Michigan Tech across new programs, new areas of research, new sponsors, and larger projects.”

    Havens has a passion both for academic research and innovation, and also for mentoring. This is why he loves being a professor, where he can do both. “I really look forward to working with all the College researchers—it’s a unique opportunity to both act as a mentor to our researchers, and also to continue my own learning experience. I’m especially eager to learn more about all the great research going on in the College and at Tech, and to help our researchers accomplish their research goals,” Havens said.

    “Those who know me well, know that I also like to put on a show. I view part of being an Associate Dean as exactly that—I really enjoy telling the stories of the College and our researchers, and cultivating the visibility of our new College. It’s an exciting time to be in computing at Michigan Tech.”

    Havens considers himself fortunate to have to have worked with several talented research mentors in his career path, starting with his experience as a master’s student at Michigan Tech, where he investigated the optical properties of the atmosphere with his M.S. advisor, Michigan Tech professor Dr. Mike Roggemann.

    Havens first job following completion of his M.S. was at MIT Lincoln Laboratory, where he investigated adaptive optics systems in support of the Airborne Laser program. Following that experience, he knew he wanted to be an academic researcher and a professor, so he returned to school to complete his Ph.D. at University of Missouri with advisor Dr. Jim Keller.

    “Dr. Keller is a consummate researcher and one can’t help but to catch the research bug working with him. He was and continues to be a great mentor; he made sure that I received lots of practice writing papers and proposals, talking to program managers, strategizing research projects, collaborating outside my field, all important aspects of running a research program,” Havens said.

    Havens notes that the duties of his latest gig, as director of the Institute of Computing and Cybersystems (ICC), are very similar to those of the Associate Dean for Research. 

    “The ICC is very much a part of the strategic vision for research in the College of Computing, as the institute acts as the research arm of the College. This integration allows us to best utilize the finite resources of both the College of Computing and the ICC to get the greatest return on key investments in people and resources,” Havens explained.

    “Launching the new College has been a wild experience so far and such a fantastic opportunity,” Havens said. “With this shift, we boldly announce that computing is a major field of study and not just an underpinning to other disciplines. I see the new College as a place of opportunity to experiment, collaborate, develop new pedagogies, and become a model for other institutions of higher learning. Our team is strong and creative, and it’s fun working on this puzzle with them.”