Author: Sue Hill

Sue Hill is the Digital Content Manager for the College of Engineering.

S-TEM Tomography Video

Screenshot of particles in a box with 500 nm scale bar
S-TEM Tomography of Li-ion Battery Cathode Particles

Watch the Video

Research by Stephen A. Hackney, Professor, Materials Science and Engineering, Michigan Technological University.

Imaging by Pinaki Mukherjee, Staff, Materials Science and Engineering, Engineer/Scientist, Applied Chemical and Morphological Analysis Laboratory (ACMAL).

Instrument: FEI 200kV Titan Themis S-TEM in ACMAL’s Electron Optics Facility.

Scale bar indicates 500 nm.

There is no audio.

Course in Surface and Interface Science

Surface ArraySurface and Interface Science CH5665/MSE5665

(3 credits)
WF 1-2 p.m., M 1-4 p.m. (lab)

Course Description – covers an advanced study of:

  • surface processes
  • properties of crystalline surfaces
  • surface analysis methods
  • applications towards materials science, heterogeneous catalysis, environmental science, semiconductor and energy industries

Objectives

  • Understand the physical and chemical processes on a surface
  • Distinguish differences between surface science techniques and their respective capabilities
  • Analyze example data from surface science techniques
  • Recognize, review and interpret surface science literature
  • Design an experiment (or project) and choose a surface science technique that would solve a proposed hypothesis

For more information contact:

Dr. Kathryn A. Perrine
kaperrin@mtu.edu

View the Flyer

Surface Analysis Using the XPS

PHI 5800 X-ray Photoelectron Spectrometer
PHI 5800 X-ray Photoelectron Spectrometer

Analyzing the surface of materials takes X-ray vision.

To do so, researchers peer into the surface chemistry of materials using X-ray photoelectron spectroscopy (XPS). At Michigan Technological University, the Applied Chemical and Morphological Analysis Laboratory (ACMAL) delves into surfaces with a PHI 5800 XPS.

Read more at Be Brief: Surface, by Allison Mills.

Timothy Leftwich, research assistant professor of materials science, helps researchers to collect, analyze, and understand their XPS data at the ACMAL facility. Kathryn Perrine, assistant professor of chemistry, helped to bring the XPS instrument to Tech and teaches students and researchers to understand surface processes. They both bring expertise in surface science and analysis of materials.

Gold Quantum Dots Observed with S-TEM

Gold Quantum DotYoke Khin Yap, professor of physics at Michigan Tech, led the study. He explains that the behavior his team observed — atomic-level manipulation of gold quantum dots — can be seen with a scanning transmission electron microscope (STEM). The STEM’s high-powered beam of electrons enables researchers like Yap to watch atomic movement in real-time and the view reveals how gold atoms interact with the surface of boron nitride nanotubes. Basically, the gold atoms glide along the surface of the nanotubes and, they stabilize in a hover just above the hexagon honeycomb of the boron nitride nanotubes.

Read more at Michigan Tech News, by Allison Mills.

Related:

Atomic Zoom: Michigan Tech’s Scanning Transmission Electron Microscope

S-TEM Images for Al-Sc Alloy

S-TEM Al Sc imagesPaul Sanders, Patrick Horvath Endowed Associate Professor of materials science and engineering, and materials science and engineering graduate student Yang Yang, are trying to strengthen aluminum by adding scandium to it.

The aberration-corrected FEI Titan Themis scanning transmission electron microscope (STEM) in Michigan Tech’s Applied Chemical and Morphological Analysis Laboratory, makes an electron beam less than an atom in width. This allows researchers to scan through samples one atom column at a time. Additionally, the lab has a SuperXTM X-ray detector, which is an array of four detectors to collect four times more X-rays than a conventional detector.

Combining the two techniques, researchers can element map at atomic resolution.

Read more at Unscripted, by Kelley Christensen.

Related:

S-TEM Provides Insight to Alloy Behavior

New EOF Lab Assistant Elizabeth (Fraki) Miller

Elizabeth (Fraki) Miller
Elizabeth (Fraki) Miller

My name is Elizabeth (Fraki) Miller. I have a bachelor’s degree in Forest Science from Michigan Tech. I am highly involved with several local groups including Ski Tigers, Singletrack Flyers, the SöKē Trails, and the Keweenaw Homeschoolers. I am interested in Nutritional Biochemistry and plan to pursue a Master’s Degree in Chemistry. I enjoy mountain biking, weight lifting, yoga, and cross country skiing.

Graphite exfoliation by supercritical carbon dioxide extraction

Wattanaprayoon Supercritical Carbon Dioxide
A schematic of graphite exfoliation by supercritical carbon dioxide.

Extract

Supercritical carbon dioxide is used to exfoliate graphite, producing a small, several-layer graphitic flake. The supercritical conditions of 2000, 2500, and 3000 psi and temperatures of 40°, 50°, and 60°C, have been used to study the effect of critical density on the sizes and zeta potentials of the treated flakes. Photon Correlation Spectroscopy (PCS), Brunauer-Emmett-Teller (BET) surface area measurement, field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM) are used to observe the features of the flakes.

Wattanaprayoon, Chaiyaporn, “Graphite exfoliation by supercritical carbon dioxide extraction”, Master’s Thesis, Michigan Technological University, 2011.

https://digitalcommons.mtu.edu/etds/8

S-TEM Provides Insight to Alloy Behavior

S-TEM MappingMaterials Science doctoral candidate Deji Fadayomi, and professors Paul Sanders and Gregory Odegard, are working on these precipitation-strengthening mechanisms in aluminum-based alloys. This atomic-resolution image and elemental maps of precipitates were obtained in aberration-corrected scanning transmission electron microscope (AC-STEM) at Michigan Tech’s Applied Chemical and Morphological Analysis Laboratory (ACMAL) to better understand alloy behavior at an atomic level.

Read more at Be Brief: Strength, by Kelley Christensen.

S-TEM Live Lab Tour Video Spring 2018

Michigan Tech faculty and staff presented a live tour of the FEI 200kV Titan Themis S-TEM facility on Facebook last Wednesday, February 14, 2018.

Introducing the tour was Kelley Christensen, science and technology publications writer for University Marketing and Communications. Steve Hackney, a professor in the Department of Materials Science and Engineering, talked about the atomic scale science and engineering taking place in the housing facility, the Advanced Technology Development Complex (ATDC).

ACMAL Director Owen Mills discussed sample preparation procedures. S-TEM specialist Pinaki Mukherjee demonstrated operation of the instrument and its capabilities.

Facebook Video | YouTube Video

Related:

Atomic Zoom: Michigan Tech’s Scanning Transmission Electron Microscope