Dean’s Teaching Showcase: Timothy Eisele

Tim Eisele
Tim Eisele

Dean Janet Callahan has selected Timothy Eisele, associate professor in the Department of Chemical Engineering, as our seventh 2022 Deans’ Teaching Showcase member.

Eisele will be recognized at an end-of-term event with other showcase members and is also a candidate for the CTL Instructional Award Series.

Eisele was selected for his record of engaging students in the classroom through hands-on experiential learning and relating material to real-world examples and his own research.

Among the variety of classes taught by Eisele are courses focused on the extraction of metal ions from fluids. While these align with his research expertise, available textbooks often don’t include the latest research in the field. Eisele fills that gap by working continuously to improve his class notes and handouts each year. He also develops unique in-class demonstrations and laboratories that elucidate these current topics. His priority is to make these accessible and connected to his students’ world. For example, in Hydrometallurgy/Pyrometallurgy, there is a copper electrowinning experiment students are able to conduct entirely at home. Eisele’s philosophy focuses on helping students develop a deep understanding of the subject material, so they can internalize what they are learning and remain engaged.

Callahan especially appreciates this ability to find and do science outside of the lab. “Dr. Eisele finds experiments to do — even in his own backyard,” she notes. “I recently had him as a guest for Michigan Tech’s Zoom webinar series, Husky Bites, where he relayed how he has developed a way to extract manganese and iron by using naturally occurring anaerobic iron-dissolving organisms.”

Chemical Engineering chair Pradeep Agrawal highlighted two other distinguishing features of Eisele’s teaching: his passion and genuine concern for engaging students. “The students readily sense his enthusiasm for the subject matter and his desire to engage them with the material,” writes Agrawal, who emphasizes that Eisele’s willingness to take time to relate class topics to the real world — while also respecting the parameters of being a student in today’s pandemic context — helps students as they master difficult topics.

“Active learning, enthusiasm for the subject, clear explanations and a strongly organized course are descriptors that align with Eisele’s approach to teaching,” summarized Callahan. “It is a pleasure to nominate Dr. Eisele for the Dean’s Teaching Showcase.”

2022-2023 Michigan Space Grant Consortium Awards

Michigan Space Grant Consortium NASA

A diverse, multitalented group of Michigan Tech students, faculty and staff members have been awarded fellowships and grants totaling an impressive $55,701 from the Michigan Space Grant Consortium (MSGC) for its 2022-23 funding cycle. This funding is sponsored by NASA.

Seismic amplitude-based lahar tracking, agriculture and food security, the effects of heavy metals on vegetation, and job shadowing aerospace and earth systems careers: these are just a few of the exciting, innovative projects that received funding.

The MSGC reflects NASA’s interests and promotes awareness, research and education in “space-related science and technology in Michigan.” To achieve this goal, the consortium not only funds fellowships and scholarships for STEM students, but also financially supports curriculum enhancement and faculty development. The MSGC is also deeply committed to supporting and upholding NASA’s policy of diversity and inclusion.

Congratulations to the winners and best of luck on your projects.

Thank you for representing Michigan Tech and making our University community proud!

Michigan Tech undergraduates who received $4,000 research fellowships are:

  • Brendan Harville (GMES) — “Seismic Amplitude-Based Lahar Tracking for Real-Time Hazard Assessment” with Greg Waite (GMES)
  • Sierra Williams (CFRES) — “Understanding the Controls of Solute Transport by Streamflow Using Concentration-Discharge Relationship in the Upper Peninsula of Michigan” with Fengjing Liu (CFRES)

Michigan Tech graduate students who received $5,000 research fellowships are:

  • Espree Essig (GMES) — “Analyzing the Effects of Heavy Metals on Vegetation Hyperspectral Reflectance Properties in the Mid-Continent Rift, USA” with Chad Deering (GMES)
  • Caleb Kaminski (GMES) — “Investigation of Ground-Penetrating Radar Interactions with Basaltic Substrate for Future Lunar Missions” with Aleksey Smirnov (GMES)
  • Katherine Langfield (GMES) — “Structural Characteristics of the Keweenaw and Hancock Faults in the Midcontinent Rift System and Possible Relationship to the Grenville Mountain Belt” with James DeGraff (GMES)
  • Tyler LeMahieu (CEGE) — “Assessing Flood Resilience in Constructed Streambeds: Flume Comparison of Design Methodologies” with Brian Barkdoll (CEGE)
  • Paolo Rivera Gonzalez (GMES) — “Impacts of La Canícula (“Dog Days of Summer”) on Agriculture and Food Security in Salvadoran communities in the Central American Dry Corridor” with Kari Henquinet (SS)
  • Erican Santiago (BioMed) — “Perchlorate Detection Using a Graphene Oxide-Based Biosensor” with Hyeun Joong Yoon (BioMed)
  • Kyle Schwiebert (Math) — “LES-C Turbulence Models and Their Applications in Aerodynamic Phenomena” with Alexander Labovsky (Math)

Michigan Tech faculty and staff members who received $2,200 or more for pre-college outreach and research seed programs are:

  • Paul van Susante (ME-EM) — Hands-On NASA-Oriented Experiences for Student Groups (HONES): “Lunabotics Competition Robot”
  • Jannah Tumey (Center for Educational Outreach) — “Tomorrow’s Talent Series: Exploring Aerospace & Earth System Careers Through Virtual Job-Shadowing”
  • Xinyu Ye (CEGE) — “Analyzing the Effects of Potential Climate and Land-Use Changes on Hydrologic Processes of Maumee River Watershed Using a Coupled Atmosphere-Lake-Land Modeling System”

By the Graduate School and Shelly A. Galliah.

Martha Sloan: Tech Tales Emeritus

Professor Emerita Martha Sloan changed the face of both Michigan Tech and engineering education.

Martha Sloan shares her knowledge on Husky Bites, a free, interactive Zoom webinar this Monday, February 28 at 6 pm ET. Learn something new in just 30 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 2/28 at 6 ET? Grab a bite with Dean Janet Callahan and Michigan Tech Professor Emerita Martha Sloan, whose impact on people on and off the Michigan Tech campus has been monumental. During Husky Bites, Prof. Sloan will share stories from an earlier time at Michigan Tech, when women in engineering were few and far between.

Joining in during Husky Bites will be Dan Fuhrmann, the Dave House Professor of Computer Engineering and chair of the Department of Applied Computing at Michigan Tech.

“Martha was a faculty member in the Department of Electrical and Computer Engineering when I first came to Michigan Tech in 2008 to take the position of ECE department chair,” notes Fuhrmann. “Shortly thereafter I appointed her as associate chair, a position she held until 2012, just before her retirement after 43 years of service at Michigan Tech.”

Applied Computing Department Chair Dan Fuhrmann

A pioneer in many aspects of her career, Sloan is also a legendary mentor who always has time to help anyone who asks. She was the first woman to be hired as a faculty member in the Michigan Tech ECE department, and later became the first woman to serve as chair of the department. Sloan was also the first woman to become the president of the Institute of Electrical and Electronics Engineers (IEEE), the largest professional organization in the world.

Sloan earned all of her three degrees–a BS in Electrical Engineering with great distinction, an MS in Electrical Engineering, and a PhD in Education–at Stanford University. She earned her BSEE in 1961, Phi Beta Kappa and with great distinction, as the only woman among approximately 600 engineering graduates.

Prof. Sloan took home the ASEE Outstanding Young Electrical Engineering Educator Award.

In the 1960s she worked at the Palo Alto Research Laboratory of the Lockheed Missiles and Space Company. She began a PhD program at the Massachusetts Institute of Technology but, feeling isolated there and pregnant with her first child, she did not complete the program. Instead, she moved to Germany, where she taught for two years at the Frankfurt International School. 

“My German was not good enough to be able to work as an engineer, so I taught 7th and 8th grade science, and picked up a MS in secondary education–all  in German–while I was there, too,” Sloan recalls. 

In 1969 Sloan moved to Houghton, Michigan with her husband, Norman Sloan, who had accepted a position as a professor of ornithology, forestry, and wildlife management at Michigan Tech.

As a role model and mentor, Dr. Martha Sloan supports women across campus and around the globe.

“I found myself looking for a job once again and thought I’d go back to teaching,” she says. “At the time there was no need for math or science teachers in the Houghton area. On sheer impulse, I wandered into Michigan Tech’s EE department, just to see if they needed a teacher, since I had a master’s degree. I was hired on the spot to teach Circuits.”

Needing a doctorate for her new job at Michigan Tech, Sloan returned to Stanford to earn a PhD in Education in 1973. Her thesis was on the COSINE Committee, an NSF-funded project to include computer engineering as part of the electrical engineering curriculum. 

Sloan became active in engineering professional societies, serving as treasurer, vice president, and president of the IEEE Computer Society, IEEE, and AAES. She served for nine years on the board of trustees of SWE, the Society of Women Engineers.

To pay tribute to Dr. Martha Sloan’s impressive legacy at Tech and her groundbreaking achievements, ECE alumna Jane Fryman Laird ’68 dedicated a bench at Husky Plaza in Dr. Sloan’s honor. 

Over the years Sloan has been honored with the Frederick Emmons Terman Award by the American Society for Engineering Education (ASEE), the IEEE Centennial Medal, and the IEEE Richard E. Merwin Distinguished Service Award. She received an honorary doctorate from Concordia University, was elected fellow of the Association for Computing Machinery, given the Distinguished Engineering Educator Award of the Society of Women Engineers (SWE), and earned the Michigan Tech Distinguished Service Award, too. (Read Professor Sloan’s complete bio on Wikipedia.)

In 1991 Sloan became a fellow of the IEEE “for contributions to engineering education, leadership in the development of computer engineering education as a discipline, and leadership in extending engineering education to women.”

I’ve liked math and science since grade school, especially physics.

Professor Emerita Martha Sloan

Prof. Sloan, How did you first get into engineering? What sparked your interest?

Dr. Sloan holds her infant grandchild
Prof. Sloan is recognized by the Michigan Tech Alumni Association as an Honorary Michigan Tech Alumna.

The summer before my senior year in high school, I attended a five-week science and technology program at Northwestern University’s National High School Institute, with lectures and labs on all science and engineering programs Northwestern offered, plus field trips to industry in northern Illinois and Indiana. I was particularly enchanted by a unit on AC circuits taught from a book by Kerchner and Corcoran, which I later learned was the standard college text on the subject. By the end of the summer I was the top student in the program—I didn’t know there was a contest—and won a full scholarship to Northwestern. But I didn’t go to Northwestern; I went to Stanford, which I chose because the campus was so beautiful. This was before Stanford was as highly ranked as it is today (it was near the bottom of the top 20).

Prof. Sloan with her children and their spouses, all highly accomplished and then some.

I intended to major in physics, but then, in the  summer just before my freshman year, a letter arrived from Stanford advising me that if I had any thought of possibly majoring in engineering, I should start in engineering because transferring out was easy but transferring in might delay my graduation. So I chose electrical engineering, based on liking AC circuits.

Hometown and family?

I was born in Aurora, Illinois to an obstetrician and stay-at-home mom. They had both majored in chemistry in college. My brother became a math professor and assistant chair of the math department at the University of Illinois.

Three of Prof. Sloan’s adorable grandkids!

My daughter is a law professor at Chicago Kent. Her daughter (my granddaughter) earned an MS in Public Health and conducts research in Boston on comorbidities, when a patient has two or more diseases or medical conditions the same time. She has boy-girl twins who are now both studying medicine at different medical schools in Chicago. In addition, my great granddaughter’s longtime boyfriend is studying at a third Chicago medical school—so the family has Chicago medical schools almost covered! 

My son graduated from the US Naval Academy, spent 20 years in the Marines, and is now working on safety aspects of autonomous vehicles for General Motors. He and his wife, also a USNA graduate, have three young children.

Any hobbies? Pets? What do you like to do in your spare time?

I have two springer spaniels. I spend my spare time reading–and doing some writing, too. I’ve taken two classes on writing memoirs in the past year.

Prof. Dan Fuhrmann’s research focus: signal processing.

Prof. Furhmann, how did you first get into engineering and computing? What sparked your interest?

I was good at math and science in junior high and high school, so it just seemed like a natural path.

Hometown, family?

Born in Bartlesville, Oklahoma and later moved to Tulsa, Oklahoma. I am the youngest of four children. Currently married 26 years with three grown children in a blended family.

Upper Peninsula of Michigan, or Steamboat Springs, Colorado? Find out during Husky Bites!

What do you like to do in your spare time?

Jamming on the deck!

I’ve played piano semi-professionally my entire adult life, including jazz, pop, rock, and salsa. I enjoy both downhill and cross-country skiing. I try to take advantage of the Copper Country winters!

Read more

Jane Fryman Laird ’68 and Dr. Martha Sloan – Blazing a Trail for Generations of Tech Women
Martha Sloan IEEE Computer Society President and Award Recipient
Oral History Transcript – Martha Sloan: Engineering and Technology History Wiki

Reimagining the Possible! Happy Engineer’s Week 2022!

Reimagine what seems impossible –  to become the Possible! It’s National Engineers Week Feb 20-26.

This week, we’re celebrating National Engineers Week (Feb. 20-26). Everyone’s invited to special events on campus sponsored by Tau Beta Pi, the Engineering Honor Society student chapter at Michigan Tech.

Founded by the National Society of Professional Engineers in 1951, Eweek is celebrated each February around the time of George Washington’s birthday (February 22) because Washington is considered by many to be the first US engineer. Engineers create new possibilities all the time. From green buildings to fuel-efficient cars to life-saving vaccines, engineers work together to develop new technologies, products and opportunities that change how we live for the better.

At Michigan Tech, the week is organized by Tau Beta Pi, and celebrated with special events on campus, many hosted by student organizations. Everyone is welcome! Please feel free to stop by and check out Eweek events as your schedule allows:

Monday, Feb. 21

5pm to 6pm
Tau Beta Pi Alumni Panel
Contact Jacob Stewart, Tau Beta Pi, for details (jacstewa@mtu.edu).

Dr. Zhanping You shares his methods and results on building new roads from recycled waste tires and old pavement rubble!

6 pm to 7 pm
Where the Rubber Meets the Road
Husky Bites Zoom Webinar
Join Professor Zhanping You and PhD student Kobe Jin to learn how old tires + pavement rubble are becoming new recycled, better roads!

Tuesday, Feb. 22

3:30pm to 5:30pm
Egg Drop Design Challenge
Makerspace in the MUB Basement
Some may remember this activity from past years. Experts and novices alike are welcome to give it a try. Mind Trekkers adds their own twist!

Are you up for the (egg drop) challenge?

Wednesday, Feb. 23

11am to 2pm
Eweek Cake
112 Dillman
Delicious cake from Roy’s Bakery, hosted by the Department of Engineering Fundamentals, it’s a longtime Eweek tradition at Michigan Tech!

Come grab your piece of cake!

5pm to 6pm
Spaghetti Towers
Fisher 129
Test your engineering skills with SSC and Built World Enterprise: Who can build the tallest spaghetti and marshmallow skyscraper?!?

Thursday, Feb. 26

2pm to 4pm
Metal Foundry in a Box

M&M room U109
Never been in a foundry before? The students at Materials United will help you feel right at home. Make something small. Let it cool, then come pick it up later.

Not an MSE, but still want try your hand at making something in the foundry at Michigan Tech? Here’s your chance!

Friday, Feb. 25

4 pm to 7 pm
Escape Room
MUB Ballroom A2
Join Mind Trekkers for an engineering Escape Room that is truly above and beyond!

Interview with Dr. Sarah Rajala ’74

Sage advice from Dr. Sarah Rajala: “Take ownership of your learning!”

Michigan Tech electrical engineering alumna Dr. Sarah Rajala is professor emeritus and former dean of engineering at Iowa State University. She’s an internationally-known leader in the field of engineering education—and a pioneering ground breaker for women in engineering. She serves as a role model for young women and is passionate about diversity of thought and culture, especially in a college environment.

This month we celebrate with Dr. Rajala—she was elected to the National Academy of Engineering, one of the highest professional recognitions in engineering.

Dr. Rajala, how did Michigan Tech prepare you as a leader in engineering education? Or simply as a leader?

Being the only female in my electrical engineering class, I experienced numerous gender biases. In the early 1970s, there was still much skepticism about whether ‘a girl could be an engineer’. My experiences laid a foundation for my commitment to creating a more inclusive culture in engineering and in engineering education, in general. 

You have kept busy, pushing the boundaries across your entire career. What advice do you have for mid-career people looking for their next challenges and opportunities?

First, take advantage of the opportunities that are offered, especially if they allow you to expand your boundaries. Don’t be shy about raising your hand and indicating your interest. Professional societies are great places to find new challenges and opportunities. Of course, it is also important to set your priorities and know when to say no. Also keep in mind that there is no single path that is right for everyone.  

Based on what you’ve learned as an educator, do you have one or two pieces of advice for a high school junior or senior?

We each learn new material in different ways. Don’t decide you dislike a subject because you don’t like the way the teacher presents the material. And don’t be afraid to ask questions or ask the teacher if she/he can present the topic differently. Alternatively, work with your fellow students or another teacher who can help you explore the topic in a different way. Search the internet. There are many good resources out there that can supplement what you are learning in class. Take ownership of your learning!

What qualities do students need to develop in themselves in order to become solvers of problems?

Start with the fundamentals. Be inquisitive. Write down what you know and try to start working the problem. If you are really stuck, ask for help. Show someone what you have done so far, then ask for a hint to help you get started.  You will learn more, if you can get started and work the rest out for yourself.

Where do you think engineering education will be 20 years from now?

I hope we are more inclusive! No matter how one learns, we should be able to adapt our instructional approaches to engage and motivate everyone. Technology will likely play a larger role in the learning process. There will be an increasing number of new subjects to learn. Students and educators will all need to adapt to new ways to teach and learn. 

William S. Hammack Elected to the National Academy of Engineering

Prof. William S. Hammack

Michigan Tech chemical engineering alumnus William S. Hammack ’84 has been elected to the National Academy of Engineering, among the highest professional distinctions accorded to an engineer. Hammack is honored for innovations in multidisciplinary engineering education, outreach, and service to the profession through development and communication of internet-delivered content.

Hammack earned a BS in Chemical Engineering at Michigan Tech, and an MS and PhD in Chemical Engineering from the University of Illinois — Urbana-Champaign. He taught at Carnegie Mellon for a decade before returning, in 1999, to the University of Illinois, where he now teaches in the Department of Chemical and Biomolecular Engineering. 

As an engineer, Hammack’s mission over the last 25 years has been to explain engineering to the public. His media work — from his work in public radio to his books to his pioneering use over the last decade of internet-delivered video— has been listened, read, or viewed over seventy million times. He also recorded more than 200 public radio segments that describe what, why and how engineers do what they do. 

Hammack’s videos (The Engineer Guy), with more than 1.2 million followers on YouTube) are licensed under creative commons so they can be fully used to serve the public. They have been used by both industrial giants and small firms to train their workforce, in college classrooms to hone budding engineers, in K-12 classrooms, and by home schools to excite the next generation of engineers.

Among his many other honors, Hammack in 2020 was awarded the Hoover Medal, given by a consortium of five engineering societies. The award is named for its first recipient, US President Herbert Hoover, who was an engineer by profession. Established in 1929 to honor “great, unselfish, nontechnical services by engineers to humanity,” the award is administered by a board representing five engineering organizations. Previous winners include presidents Dwight D. Eisenhower and Jimmy Carter; industrialist David Packard, the founder of Hewlett-Packard; and inventor Dean Kamen.

In 2018 Hammack was presented with the Carl Sagan Award for the Public Appreciation of Science, given by the Council of Scientific Society Presidents to recognize outstanding achievement in improving the public understanding and appreciation of science. 

Professor Bill Hammack’s upcoming book, The Things We Make: The Unknown History of Invention from Cathedrals to Soda Cans, is due out this Fall 2022.

Hammar is the author of seven books. His newest, a book on the engineering method, “The Things We Make: The Unknown History of Invention from Cathedrals to Soda Cans,” will be published later this year. In it Hammack shares human stories, perception-changing histories of invention, and accessible explanations of technology–revealing a panorama of human creativity across millennia and continents.

Hammack has also received the Public Service Award from the National Science Board, the Ralph Coats Roe Medal from the American Society of Mechanical Engineers, the Distinguished Literary Contribution Furthering the Public Understanding of the Profession (IEEE), and the President’s Award, American Society for Engineering Education (ASEE). Read more on his website, billhammack.org.

Read more:

NAE Bridge: An Interview with . . . Bill Hammack, Engineer Guy

“Engineering Guy” Bill Hammack

Samson A. Jenekhe, Michigan Tech Alumnus, Elected to the National Academy of Engineering

Professor Sam Jenekhe’s pioneering polymer research paved the way for commercial OLEDs

Michigan Tech alumnus Samson A Jenekhe ’77 has been elected to the National Academy of Engineering, among the highest professional distinctions accorded to an engineer. Dr. Jenekhe is honored for discovery and understanding of conjugated materials for organic light-emitting diodes (OLEDs) widely used in the commercial sector.

A professor of chemistry and the Boeing-Martin Professor of Chemical Engineering at the University of Washington, Jenekhe studies the fundamental physical and chemical properties of semiconductor materials, as well as their practical applications. Research topics have included organic and flexible electronics, the use of organic light-emitting diodes for lighting and displays, energy storage and conversion systems, semiconducting polymers and polymer-based photovoltaic systems.

Jenekhe is a Chemical Engineer who earned his BS at Michigan Tech and his MS, MA, and PhD at the University of Minnesota. Jenekhe worked as a research scientist for Honeywell, Inc. and later joined the faculty at the University of Rochester, before joining the faculty at the University of Washington in 2000.

He is a fellow of the American Association for the Advancement of Science, the Royal Society of Chemistry and the American Physical Society, which in 2021 also awarded him the Polymer Physics Prize. He also received the Charles M.A. Stine Award for Excellence in Materials Science from the American Institute for Chemical Engineers in 2014.

Read More

Samson A. Jenekhe’s Pioneering Polymer Work Paved the Way for Commercial OLEDs
US Department of Energy: OLED Basics

Watch

Distinguished Chemical Engineering Seminar given by Professor Samson Jenekhe, University of Washington. Held on 2 March 2016 at the Department of Chemical Engineering, Imperial College London.

Play Plastic electronics and photovoltaics video
Preview image for Plastic electronics and photovoltaics video

Plastic electronics and photovoltaics

Zhanping You: Where the Rubber Meets the Road

Professor Zhanping You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. 
Professor Zhanping You

Zhanping You generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan back on Monday, February 21. You can view the YouTube recording of his session to learn something new in just 30 minutes (or so). Here’s the link to watch. Register for future sessions of Husky Bites at mtu.edu/huskybites. Grab some supper, or just flop down on your couch. Everyone’s welcome! It’s BYOC (Bring Your Own Curiosity).

Dr. Zhanping You, a Distinguished Professor of Transportation Engineering in the Department of Civil, Environmental and Geospatial Engineering, uses old tires to make new roads. One of Prof. You’s doctoral students, Dongzhao “Kobe” Jin, joined in to talk about the process.

Kobe Jin

Dr. You works with recycled materials to improve asphalt pavement performance. Crumb rubber, made from scrap tires, is one such material. ”Crumb rubber in asphalt reduces rutting and cracks and extends life, and it lowers noise levels,” he says. 

Scrap tires are plentiful, though not in a good way. “Hundreds of millions of scrap tires are generated in the US every year,” he notes. “Those giant piles of waste tires pose concerns of potential contamination of local groundwater and fire risk.”

You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. “We do it through various experimental and numerical modeling techniques,” You explains. “Our research team has also expanded the work to include field pilot projects, too. Over the past 6-7 years or so, we’ve constructed quite a few roads in Michigan that use recycled tire rubber.” The team works with the Michigan Department of Environment, Great Lakes, and Energy (EGLE) and the EGLE Scrap Tire division, plus road commissions in Dickinson County, Kent County, St. Clair County, Clare County, and Bay County.

“Teaching provides me with broad dimensions to sharpen my research vision, while research helps me develop in-depth understanding so that I can teach better,” Dr. You says.

Another material You and his team employ: pavement rubble. “More than 94% of the roads in the United States are paved with asphalt mix—about 360 million tons each year. In turn, that generates over 60 million tons of old asphalt pavement waste and rubble,” he notes. Recycling these waste materials not only greatly reduces the consumption of neat asphalt mix, it also lowers related environmental pollution, he adds. 

Blending recycled asphalt pavement (RAP) with fresh asphalt mix has presented several challenges for You and his team. “One noticeable issue of using RAP in asphalt pavement is the relatively weaker bond between the RAP and neat asphalt, which may cause moisture susceptibility,” he says. “We have determined that modifying the asphalt mix procedure and selecting the correct neat asphalt can effectively address this concern.” 

Before the recycled asphalt-tire-gravel mix ever makes it outside, You and his research team do plenty of work indoors, using computer modeling and lab tests to make sure they put viable material out in the elements. 

“When crumb rubber is blended into an asphalt binder, the stiffness of the asphalt binder is increased,” You explains. “ A higher mixing temperature is needed to preserve the flowability of asphalt binder. Conventional hot-mix asphalt uses a lot of energy and releases a lot of fumes. To solve this problem we developed a warm mix technology, a foaming process at lower temperatures, that requires less energy and reduces greenhouse gas emissions.” 

You and his group developed and tested several foaming technologies for warm mix asphalt, integrating state-of-the-art rheological and accelerated aging tests, thermodynamics, poromechanics, chemical changes and multi-scale modeling to identify the physical and mechanical properties of foamed asphalt materials. 

You has other solutions in the works, too, including man-made asphalt derived from biomass. “We tried using bio oil (derived from biomass) in asphalt and found it also improved pavement performance,” he says. 

Not even the pandemic can stop the construction of recycled roads in Michigan!
A Michigan Tech research team of students led by Zhanping You tests a new, cooler way to make rubberized asphalt in Michigan’s Upper Peninsula.

“Asphalt made from bio oil can potentially reduce the consumption of petroleum asphalt and lower the production temperature while road rutting resistance can be improved. We actively work with local, state, and national recycling efforts to develop better road materials, using plastics, waste glass, and several other recyclables, too,” he notes. “We hope our efforts will contribute to a circular and low-carbon economy.”

Prof. You, how did you first get into engineering? What sparked your interest?

I got into civil engineering accidentally, but started to love it. When I was little, I had debates with my friends on the possible damage on roads–was it the load or the pressure from the tires?

Hometown, family?

I view Houghton as my hometown now since I have been here almost 17 years, even though I was born and raised in Northwest China.

A lot of testing goes on in Dr. You’s lab at Michigan Tech.

What do you like to do in your spare time?

I love to read books—non-engineering, engineering, history, and literature. I’m also a recently appointed coadvisor to the Michigan Tech student chapter of Society of Asian Scientists and Engineers (SASE). After years of service in various professional groups at Michigan Tech, I believe an organization of Asian students involved in science and engineering is really needed.

Kobe, how did you first get into engineering? What sparked your interest?

Says Kobe: “Dr. You’s humor, lifestyle, rigorous academic attitude, and profound understanding of sustainable pavement all impact me a lot.”

The first time I got interested in engineering was when they were paving the concrete road in my hometown. I became interested in how and why a mix of some aggregate, sand, and water could create such a hard road.

Hometown, family?

My hometown is a small county in Henan Province, China. I have two sisters and I love my family.

Any hobbies? Pets? 

I like cats and basketball (I go by Kobe in honor of my favorite basketball player). I read science fiction books during my spare time.

Read More

Q&A with Research Award Winner Zhanping You
When Rubber Becomes the Road

Kobe enjoys the Houghton Waterfront Park near campus (even in the middle of winter!)

TECH SCEnE: Adventure is Calling Your Name

TECH SCEnE REU 2021 alum Elizabeth Chery studies biomedical engineering at Florida International University, in Miami, Florida.

Want to combine engineering research with direct community involvement and impact? Biomedical engineering student Elizabeth Chery did, and she took the plunge just last summer at a National Science Foundation Undergraduate Research Experience (REU) at Michigan Technological University.

The 8-week, all-expensed paid program is called TECH SCEnE (short for Technology, Science and Community Engagement in Engineering). Chery stayed on campus, went on outdoor trips throughout the Keweenaw Peninsula, guided by the Keweenaw Bay Indian Community, and conducted hands-on research on campus with her team right alongside a faculty mentor.

“I found it very refreshing to be surrounded by nature in Michigan’s Upper Peninsula, and to enjoy endless outdoor activities like fishing, biking, hiking, and going to state parks.”

It was nearing the end of spring 2021. Summer was just around the corner. Chery found herself eager to start applying some of the knowledge she had gained in her college courses out in the real world.

“I wanted to see how what I was learning could connect to my future—or who I could help. I also wanted to get more exposure to research, to find out what it might be like in graduate school,” she explains.

“I have a passion for service, too, so when I discovered TECHSCEnE—an REU that emphasize bi-weekly organic gardening and indigenous culture visits—I was highly motivated to apply. This program was everything I wished for!

“TECH SCEnE is great for any student deciding whether to go into research or industry. There will be a balance of both to help guide you to your decision.”

Elizabeth Chery, TECH SCEnE REU 2021


Elizabeth, what did you like most about TECHSCEnE?

“Being in Houghton I soon discovered my love for the outdoors, and learning about indigenous cultures.”

The beautiful remote location of the program is what I enjoyed the most! I went to school in the big city. People fly to Miami to visit all the trendy hotspots I grew up with as a child. I found it very refreshing to be surrounded by nature, and to enjoy endless outdoor activities like fishing, biking, hiking, and going to state parks.

I liked being around many different kinds of people—and learning how to work together. Although we’re all in the same age group, we came from different parts of the United States, each with our own different social norms and upbringing. Despite TECHSCEnE’s overall goal—to consider research as a career—the faculty did a phenomenal job of educating us about team building. I met great people and we made tons of special memories together! We went on numerous field trips, some centered on career information, and others focused on social skills. Both are essential components for working in the real world. 

Elizabeth Chery presents her research results during the final days of her TECH SCEnE NSF REU at Michigan Tech

What was the most challenging aspect?

“This hiking trip in North Carolina for my birthday (in September) was inspired by the scenic beauty in I enjoyed during TECH SCEnE.”

Staying organized was a definite challenge with all the data we collected during the experiments. It was absolutely imperative that I document and create a daily report, so that I could make a strong bi-weekly presentation to my peers in the TECHSCEnE program. They were not as well-versed in my topic, so I needed to take an abstract idea and relate it to something more common without being too repetitive or complex. Their bi-weekly feedback helped me find the sweet spot of not over-explaining, yet still being clear and understandable.

What next? What are your future plans?

After completing TECHSCEnE, I joined a research lab at my own university to continue my interest in research. I recently added a minor in chemistry to my major, too. My goal for the upcoming summer is to intern for a biomedical technology company or pharmaceutical company. And my future career goal remains the same: to pursue a graduate degree in biomedical engineering with a concentration in tissue engineering. My ultimate goal is to become a physician-scientist.

Are you an adventurous college student? Want to learn how to use science and technology to benefit both community and the environment? Apply to TECH SCEnE by March 15. Tribal college, community college or university students, women and students from underrepresented backgrounds are all encouraged to apply. Learn more and apply for free at techscene.mtu.edu.

Michigan Tech Alumna Sarah Rajala Elected to the National Academy of Engineering

Dr. Sarah Rajala

Sarah A. Rajala ’74, a Michigan Tech electrical engineering alumna, has been elected to the National Academy of Engineering. It is one of the highest professional distinctions accorded to an engineer. Dr. Rajala is honored for “innovations in engineering education: outcomes assessment, greater participation and retention of women in engineering, and an enhanced global community.” New members of the NAE will be formally inducted in October at the NAE’s annual meeting.

Rajala is an internationally-known leader in the field of engineering education and a ground breaker for women in engineering. She serves as a role model for young women and is passionate about diversity of thought and culture, especially in a college environment.

Originally from the Upper Peninsula of Michigan (Skandia), Rajala earned her bachelor’s degree in electrical engineering at Michigan Tech. She went on to earn masters and doctoral degrees at Rice University, and then embarked on primarily an academic career, working as a faculty member at North Carolina State University, Purdue University, and ultimately Iowa State University, where she served the engineering profession in a leadership role as the Dean of the College of Engineering until her recent retirement.

Rajala’s extensive professional leadership in the field of engineering education has included serving as president of the American Society for Engineering Education and chair of the Global Engineering Deans Council.

Across her career, in addition to working in a scholarly and teaching capacity as a professor of electrical engineering, Dr. Rajala also provided volunteer service in many professional and leadership roles. Her service roles to the societies for which she contributed culminated in important national leadership positions. These include serving as chair of the Engineering Accreditation Commission of ABET, the engineering accreditation body for engineering programs, and also as president of the American Society of Engineering Education (ASEE). 

At Michigan Tech, Rajala is a member of the Electrical Engineering Academy, inaugural recipient of the Academy for Engineering Education Leadership, and a member of the President’s Council of Alumnae, among many other honors. 

“Dr. Rajala has been an influential person to many people across her career, including me. I am incredibly proud to hear of Dr. Rajala’s election into the National Academy of Engineering,” said Dean Janet Callahan.

“I first met Sarah many years ago at the annual meeting of the American Society for Engineering Education. Later, she reached out to me when she heard I had joined Michigan Tech as the College of Engineering’s next dean. She told me, ‘You will love Michigan Tech—it is a supportive community that truly fosters the principle of tenacity.’”

Now an Iowa State professor emeritus of electrical and computer engineering, Rajala continues to be an internationally known leader in engineering. She is a fellow of the American Association for the Advancement of Science, ABET, the American Society for Engineering Education (ASEE) and the Institute of Electrical and Electronic Engineers (IEEE). Rajala has also received numerous other top awards including national engineer of the year award by the American Association of Engineering Societies and the national Harriett B. Rigas Award from the IEEE honoring outstanding female faculty.

Read more

An Interview with Dr. Sarah Rajala

To Learn From and Celebrate: Academy for Engineering Education Leadership Established

Watch

Among her many honors, Dr. Sarah Rajala received the ABET Fellow Award in 2016. This video, created by ABET in her honor, details Dr. Rajala’s inspiring accomplishments.