Tag: CEE

Stories about Civil, Environmental, and Geospatial Engineering.

Bill Sproule: Houghton, Michigan Tech, and the Stanley Cup

The Stanley cup became NHL’s famous trophy in 1927. This is an early version of the trophy, circa 1893.

Bill Sproule shares his knowledge on Husky Bites, a free, interactive webinar on Monday, September 21 at 6 pm EST. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Bill Sproule, civil engineering professor turned hockey historian

What are you doing for supper this Monday night at 6? How about grabbing a bite with Bill Sproule, hockey historian and Michigan Tech civil and environmental engineering professor emeritus, along with Michigan Tech alumnus John Scott, NHL All-Star MVP?

Sproule’s research into hockey history began about 15 years ago when he first volunteered to teach a class on the subject at Michigan Tech. During Husky Bites he plans to share the history of the Stanley Cup and tell how a Canadian-born dentist, Doc Gibson, and his “partner in crime” Houghton entrepreneur James Dee made Houghton the birthplace of professional hockey, several years before the National Hockey League came into existence. He’ll also discuss the role Gibson and Dee played in Michigan Tech hockey.

Serving as co-host along with Dean Janet Callahan during this session of Husky Bites is John Scott, an inspiration to many and the embodiment of Husky tenacity. 

When and where did hockey begin? A civil engineer in Montreal organized the first amateur game in 1875. Pictured: artists painting of an early hockey game at the Victoria Skating Rink in Montreal, Canada.

Sproule and Scott two have a lot in common. A love of hockey, for one. A fondness for Houghton, for another. Both born in Canada. They’re both retired—but not really retired. They’re both authors. Finally, they’re both Michigan Tech engineering alums. Sproule earned his BS in Civil Engineering in 1970. Scott, a practicing engineer, graduated with his BS in Mechanical Engineering 2010. 

We’re proud to claim NHL All-Star MVP John Scott as a Husky. From 2002 to 2006, he provided no-holds-barred defense and effective penalty killing for Michigan Tech.


In college, Scott had no professional hockey ambitions. That was until he met former Huskies Hockey Assistant Coach Ian Kallay. “He said, ‘You can do this. You can make a career out of this. If you put in the work, put in the hours.’ It was a huge moment for me,” Scott recalled.

How does his ME degree impact his game? “It definitely helps me pass a puck. I’m better than most at figuring out a bank pass off the boards. And most guys sharpen their skates to one-half of an inch. But I know how to increase—or not increase—my bore,” he said.

Scott’s wife, alumna Danielle Scott, who earned a BS in biomedical engineering from Michigan Tech in 2006, stepped away from her role with leading biomed company Boston Scientific to care for the couple’s six daughters, one just a few months old. Their oldest is now 8. John works with a mechanical engineering consulting firm in Traverse City. His podcast, Dropping The Gloves, also keeps him busy. “That’s where we talk about hockey, family, and all other things that are going on in my life post-NHL.”

Scott’s number one job, he firmly insists: family. That means raising his six daughters together with Danielle. He says he’s already hoping for number seven.

John Scott has a book out: A Guy Like Me: Fighting to Make the Cut. It’s his personal memoir.

Professor Sproule, when did you first get into engineering? What sparked your interest?

Actually, engineering was not my first choice. I hoped to become an architect but wasn’t accepted into an architectural program. My uncle was a civil engineer, so that’s why I picked civi; I was thinking structural engineering would be similar to architecture, and I was right, in a way!

I spent my first two years learning at Lake Superior State, a branch of Michigan Tech at the time, then came to Houghton for my junior and senior years, where I took a few transportation courses. After graduating from Tech I headed to the University of Toronto for a master’s degree, specializing in transportation engineering.

After earning my graduate degree I worked for Transport Canada and then joined a transportation engineering consulting firm. I always wondered about teaching, and was hired by a community college to help teach their their transportation engineering program. Teaching soon became my passion. Then, I headed to Michigan State University where I earned my Ph.D. in civil engineering, specializing in airport planning and design. I also taught at the University of Alberta and did more consulting before deciding to join the birthplace of Hockey—and, the faculty at Michigan Tech—in 1995.

At Tech, in my role as professor, I conducted research and taught courses in transportation engineering, public transit, airport design, and hockey history. The hockey history course was always full. How in the world did I end up teaching hockey history? I’ll tell the full story during Husky Bites…

Bill Sproule’s book, Houghton, the Birthplace of Professional Hockey, came out in 2018. And he’s got another hockey book in the works.


Family and Hobbies?

I was born and raised in Sault Ste. Marie, Ontario. My wife, Hilary was born and raised on a dairy farm north of Toronto, and earned her degrees from the University of Toronto and University of Alberta. We met in Toronto on a blind date. Together we raised two sons in Houghton. One graduated in engineering at Michigan Tech and Virginia Tech and now works in the Detroit area. The other is currently a graduate student in art history at Queen’s University in Kingston, Ontario, Canada. All the while Hilary taught in the Physical Therapy Assistance program at nearby Finlandia University.

We’re now retired, living here in Houghton. I’m still active on several professional committees and serve on the executive committee of the Society for International Hockey Research. I’ve taken a few online courses in my retirement, too: Hockey GM and Scouting, and Hockey Analytics.

I’ve penned two books, Copper Country Streetcars, and Houghton: The Birthplace of Professional Hockey. I’m currently working on my third book project, all about the history of Michigan Tech hockey—and doing some cartooning.

Credit: Dr. Bill Sproule

Read more:

Showing Off a Love of Hockey
Heart of a Husky

Save the Date!

Michigan Tech’s 100-Year Hockey Reunion will be August 5-7, 2021. You’re invited! Learn more here.

Audra Morse: Two Triangles Don’t Make a Right

Dr. Audra Morse is focused on water, especially the fate of microplastics in water. When she’s not busy leading the Department of Civil and Environmental Engineering at Michigan Technological University, that is.

Are you heading to college soon to study engineering, or thinking about it? Please join us tonight, Tuesday, July 28 at 6 pm EST for Tips and Tricks from Three Chairs and a Dean, our free interactive Zoom short course. We’d like to show you all the tips and tricks we wish someone had shown us, back when we were all starting out. 

This week the focus is on triangles. Dr. Audra Morse, chair of the Department of Civil & Environmental Engineering at Michigan Tech will be talking triangles. “High school geometry topics you never knew you needed will be put into context to solve engineering problems,” she says. “I’ll provide more engineering survival tips along the way.”

Join us at FB Live on the College of Engineering FB page, or go to the Zoom session (so you can participate in the Q&A).

Grab some supper, or just flop down on your couch. Know someone who might be interested? Feel free to bring or refer a friend. Everyone’s welcome! Get the full scoop and Zoom link at mtu.edu/huskybites.

The Morse Family! They once lived in Texas. Now Dr. Audra Morse (Civil and Environmental Engineering) and Dr. Steve Morse (Department of Mechanical Engineering) make their home at Michigan Tech.

Dr. Morse, when did you first get into engineering? What sparked your interest?

I chose to pursue engineering because I like science. I knew I did not want to be a doctor or a nurse. I did not think a biology or chemistry degree was for me. Engineering allowed me to combine my love of science with math, and make a difference in the world we live in.

Hometown, Family, Hobbies?

I grew up in Spring, Texas, which is just north of Houston. I attended Texas Tech and worked there before moving to Houghton. I have two boys and a wonderful husband. In my spare time I like to paint and walk my loving vizsla and a rowdy german short hair. My hero is Mary Poppins. 

Joe Foster: Through the Looking Glass! Geospatial Wizardry

Joe Foster shares his knowledge on Husky Bites, a free, interactive webinar this Monday, July 13 at 6 pm EST. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What if you had a high-tech job, but spent your work day outside, enjoying nature and fresh air each day? If you like computing, and the great outdoors, you need to learn more about what it takes to become a geospatial engineer.

Joe Foster is a professor of practice in the Department of Civil and Environmental Engineering at Michigan Tech. He teaches courses in the elements of land surveying. He has served as a Principal for successful Land Surveying companies in both Minnesota and Michigan, directing and overseeing a wide range of projects. “I’m also an old Michigan Tech alum, with a Bachelor’s degree in Forestry, and a second Bachelor’s degree in Surveying, both from Michigan Tech,” he notes.

Joe Foster is a professor of practice in the Department of Civil and Environmental Engineering at Michigan Tech.

Studying geospatial engineering is both an adventure and a learning experience, says Foster. A lot of learning⁠—and geospatial wizardry⁠—takes place outdoors, in the field.

“Surveyors are experts at measuring,” Foster explains. “A myriad of equipment have been used over the years to accomplish the task, tools of the trade, so to speak. Over time, Surveying has evolved to become more, known now as Geospatial Engineering.”

Surveyors, now known as Geospatial Engineers, measure the physical features of the Earth with great precision and accuracy, calculating the position, elevation, and property lines of parcels of land. They verify and establish land boundaries and are key players in the design and layout of infrastructure, including roads, bridges, cell phone towers, pipelines, and wind farms.

And they are in demand. “There is an ongoing need for Surveyors,” says Foster. “Jobs are open and can’t be filled fast enough. We have a great need for those with an interest and aptitude for the profession.”

All land-based engineering projects begin with surveying to locate structures on the ground,” says Foster. Numerous industries rely on the geospatial data and products that geospatial engineers provide. With advances in technology, the need is increasing, too⁠—from architectural firms, engineering firms, government agencies, real estate agencies, mining companies and others.

Geospatial engineering students at Michigan Tech use satellite technology GPS and GIS to determine locations and boundaries.

Out in the field, Geospatial Engineers peer “through the looking glass” using numerous tools. “Robotic total stations, GPS receivers, scanners, LiDAR, and UAVs only scratch the surface of what is available in the toolbox,” says Foster.

Three theodolites on campus at Michigan Tech

Advances in GPS technology have led to the use of Geographic Information Systems (GIS) for mapping, as well as geospatial data capture and visualization technologies. Geospatial engineers also use virtual reality integration, Structure from Motion (a technique which utilizes a series of 2-dimensional images to reconstruct the 3-dimensional structure of a scene or object, similar to LiDAR), and unmanned aerial vehicle systems (drones). At Michigan Tech, students learn to use these tools, too.

Geospatial engineering students choose from two concentrations, says Foster. “Professional Surveying prepares students to become state-licensed professional surveyors. Students learn to locate accurate real property boundaries, conduct data capture of the natural/man-made objects on the Earth’s surface⁠—and conduct digital mapping for use in design or planning.” 

Geospatial engineers use drones, too.

The second concentration is Geoinformatics. “Students learn to manage large volumes of digital geo-information that can be stored, manipulated, visualized, analyzed, and shared,” he adds. “Students use more Geographic Information Science (GIS) tools, remote sensing, big data acquisition, and cloud computing.”

Do you love math + computing+ the great outdoors? Geospatial engineering combines all those things.

Once you’re working as a geospatial engineer, you could end up using both concentrations. “Land surveying and geographic information systems (GIS) are complementary tools,” he says.

Foster is excited about the growth of opportunities in the profession. During his own career, Foster worked as a principal for successful land surveying companies in both Minnesota and Michigan, directing and overseeing a wide range of projects, including boundary, county remonumentation, and cadastral (USDA-FS) retracement surveys; topographic, site planning, and flood plain surveys; mine surveys (surface and underground); plats and subdivisions; and both conventional and GPS control surveys. He’s managed contracts with the USDA-Forest Service, mining companies in Northern Minnesota, the State of Michigan, and more. 

Foster is also a member of the Michigan Society of Professional Surveyors (MSPS). At Michigan Tech, he’s advisor to the Douglass Houghton Student Chapter of the National Society of Professional Surveyors (DHSC). Last year the group continued their tradition with the annual General Land Office (GLO) Workshop. Sponsored by DHSC and conducted by Pat Leemon, PS, retired U.S. Forest Surveyor from the Ottawa National Forest, it is a search/perpetuation of an original GLO corner. “That’s a once in a lifetime experience for a Surveyor,” says Foster.

Brockway Mountain, Copper Harbor, Keweenaw County. Getting there will take you on the highest above sea-level drive between the Rockies and the Alleghenies. The peak is the highest point in Michigan.

When did you first get into surveying? What sparked your interest?

I first got interested in Surveying while studying forestry at Michigan Tech.  Surveying was one of the courses in the program. That’s where I learned there could be an entire profession centered on surveying alone.  I was hooked.  It incorporated everything I had come to enjoy about forestry; working outside, using sophisticated equipment, drafting, and actually putting all the math I had learned to practical use. After earning my first bachelor’s degree in Forestry, I decided to get a second bachelor’s degree in Surveying and to pursue that as my career.  

Tell us about your growing up. What do you do for fun?

I was born and raised in Michigan and have worked in the forest product industry and surveying profession for over 25 years. Work has taken me to just about every corner of Northern Minnesota and Michigan’s Copper Country. I came to know my wife, Kate at Fall Camp at Alberta, at Michigan Tech’s Ford Forestry Center. We made our home in the Keweenaw, where we both have strong family ties.

Lake Superior is our first love, and one that we share. Here’s a little known fact….Keweenaw County has the highest proportion of water area to total area in the entire United States, with 541 square miles of land and 5,425 square miles of water. Nearly 90 percent of Keweenaw County is under the surface of Lake Superior!

Tips and Tricks from Three Chairs and Dean

Embarking soon on your college career? Or, still pondering embarking? Then this is for you. A free, interactive Zoom short course , “Tips and Tricks from Three Chairs and a Dean,” starts this Tuesday (July 7).

“We’ve added an extra chair, so now it is technically “Tips and Tricks from Four Chairs and a Dean,” says Janet Callahan, dean of the College of Engineering at Michigan Technological University. “We’ve created this short course for future college students. Both precollege students, and anyone who might be still be just considering going to college,” Callahan. “We want to give students leg up, and so we’re going to show all the tips and tricks we wish someone had shown us, back when we were starting out. That includes helpful strategies to use with your science and engineering coursework, as well as physics, chemistry, and math.”

The first Tips and Tricks session began on Tuesday, July 7 via Zoom at 6pm EST. If you missed it, no problem. Feel free to join the group during any point along the way. Catch recordings at mtu.edu/huskybites if you happen to miss one.

Each session will run for about 20 minutes, plus time for Q&A each Tuesday in July. The next is July 14, then July 21, and July 28. You can register here.

The series kicked off with Dean Janet Callahan and Brett Hamlin, interim chair of the Department of Engineering Fundamentals (July 7 – Tips and Tricks from Three, no, Four Chairs and a Dean).

Next up is John Gierke, past chair of the Department of Geological and Mining Engineering and Sciences (July 14 – Reverse Engineering: How Faculty Prepare Exam Problems).

Then comes Glen Archer, interim chair of the Department of Electrical and Computer Engineering (July 21 – Tips for the TI-89).

Last but not least is Audra Morse, chair of the Department of Civil and Environmental Engineering (July 28 – Two Triangles Don’t Make a Right).

“Even some middle school students, eighth grade and up, will find it helpful and useful,” adds Callahan. “Absolutely everyone is welcome. After each session, we’ll devote time to Q&A, too. I really hope you can join us, and please invite a friend!”

Get the full scoop and register at mtu.edu/huskybites.

Daisuke Minakata: Scrubbing Water

Daisuke Minakata generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

Do you trust your tap water? It’s regulated, but exactly how is tap water treated? And what about wastewater? Is it treated to protect the environment? 

Daisuke Minakata, an associate professor of Civil and Environmental Engineering at Michigan Technological University, studies the trace organic chemicals in our water. He’s also developing a tool municipalities can use to remove them.

Dr. Daisuke Minakata: “In high school I learned that environmental engineers can be leaders who help solve the Earth’s most difficult sustainability and environmental problems. That’s when I decided to become an engineer.”

“Anthropogenic chemicals—the ones resulting from the influence of human beings—are present in water everywhere,” he says. And not just a few. Hundreds, even thousands of different ones. Of particular concern are Per- and polyfluorinated alkyl substances (PFAS), an emerging groups of contaminants.

Most water treatment facilities around the country were not designed to remove synthetic organic chemicals like those found in opioids, dioxins, pesticides, flame retardants, plastics, and other pharmaceutical and personal care products, says Minakata.

This affects natural environmental waters like the Great Lakes, and rivers and streams. These pollutants have the potential to harm fish and wildlife—and us, too.

To solve this problem, Minakata investigates the effectiveness of two of the most widely used removal methods: reverse osmosis (RO), and advanced oxidation process (AOP).

PFAS foam is toxic and sticky. If you happen see it, do not touch it, or if you do come in contact, be sure to wash it off. Keep pets away from it, too.

“RO is a membrane-based technology. It separates dissolved contaminants from water,” Minakata explains. “AOPs are oxidation technologies that destroy trace organic chemicals.” Both RO and AOP are highly advanced water and wastewater treatment processes. They are promising, he says, but not yet practical. 

“The very idea of using an RO and AOPs for each trace organic chemical is incredibly daunting. It would be extremely time consuming and expensive,” he says. 

Instead, Minakata and his research team at Michigan Tech, along with collaborators at the University of New Mexico, have developed a model for predicting the rejection mechanisms of hundreds of organic chemicals through different membrane products at different operational conditions. Their project was funded by the WateReuse Research Foundation

“The rejection mechanisms of organic chemicals by RO are extremely complicated—but the use of computational chemistry tools helped us understand the mechanisms,” says Minakata. “Our ultimate goal is to develop a tool that can predict the fate of chemicals through RO at full-scale, so that water utilities can design and operate an RO system whenever a newly identified chemical becomes regulated.”

Reverse osmosis (RO) at a water treatment demonstration plant in California. Credit Daisuke Minakata
Advanced oxidation processes (AOPs) at the same California water treatment demonstration plant, above. Credit: Daisuke Minakata.

To understand and predict how trace organic chemicals degrade when destroyed in AOPs, Minakata works with a second collaborator, Michigan Tech social scientist Mark Rouleau. They use computational chemistry, experiments, and sophisticated modeling.

Water reuse, aka reclaimed water, is the use of treated municipal wastewater for beneficial purposes including irrigation, industrial uses, and even drinking water.

“Solving this problem is especially critical for the benefit of communities in dry, arid regions of the world, because of the urgent need for water reuse in those places,” says Minakata. Water reuse, aka reclaimed water, is the use of treated municipal wastewater for beneficial purposes including irrigation, industrial uses, and even drinking water. It’s also the way astronauts at the International Space Station get their water. (Note: Minakata will explain how it works during his session of Husky Bites.)

Dr. Daisuke Minakata does a lot of work in one of the nation’s top undergraduate teaching labs, the Environmental Process Simulation Center, right here on campus at Michigan Tech.

Over the past few years Minakata’s research team has included nine undergraduate research assistants, all supported either through their own research fellowships or Minakata’s research grants.

In his classes, Minakata invites students to come see him if they are interested in undergraduate research within “the first two minutes of my talk.” For many, those first few minutes have become life changing and in the words of one student who longed to make a difference, “a dream come true.”

By encouraging and enabling undergraduate students to pursue research, Dr. Minakata is helping to develop a vibrant intellectual community among the students in the College of Engineering.

Dean Janet Callahan, College of Engineering, Michigan Tech

Minakata is a member of Michigan Tech’s Sustainable Futures Institute and the Great Lakes Research Center. In addition to being a faculty member in the Department of Civil and Environmental Engineering, he is also an affiliated associate professor in both the Department of Chemistry and Department of Physics. Be sure to check out Dr. Minakata’s website, too.

“I never get tired of looking at this image,” says Daisuke Minakata, an associate professor of environmental engineering at Michigan Tech.

When did you first get into engineering? What sparked your interest?

I loved watching a beautiful image of planet Earth, one with a very clear sky and blue water, during my high school days. However, as I began to learn how life on Earth suffers many difficult environmental problems, including air pollution and water contamination, I also learned that environmental engineers can be leaders who help solve the Earth’s most difficult sustainability problems. That is when I decided to become an engineer.

In my undergraduate curriculum, the water quality and treatment classes I took were the toughest subjects to get an A. I had to work the hardest to understand the content. So, naturally, I decided to enter this discipline as I got to know about water engineering more. And then, there’s our blue planet, the image. Water makes the Earth look blue from space.

Tell us about your growing up. What do you do for fun?

I was born and raised in Japan. I came to the U.S. for the first time as a high school exchange student, just for one month. I lived in Virginia, in a place called Silverplate, a suburb of D.C. I went to Thomas Jefferson Science and Technology High School, which was the sister school of my Japanese high school, and one of the nation’s top scientific high schools. And I did like it. This triggered my study abroad dream. I was impressed by the US high school education system in the US. It’s one that never just looks for the systematic solution, but values process/logic and discussion-based classes.

So, while in college, during my graduate studies, I took a one year leave from Kyoto University in Japan and studied at U Penn (University of Pennsylvania) as a visiting graduate student for one year. Finally, I moved to Atlanta, Georgia in order to get a PhD at Georgia Institute of Technology. I accepted my position at Michigan Tech in 2013.

I’m now a father of two kids. Both are Yoopers, born here in the UP of Michigan. My wife and I really enjoy skiing (downhill and cross country) with the kids each winter. 

Summing it all up, so far I’ve lived in Virginia (1 month), Philly in Pennsylvania while going to U Penn (1 year), Phoenix in Arizona to start my PhD (3.5 years), and Atlanta in Georgia to complete my PhD and work as a research engineer (5 years). Then finally in Houghton, Michigan (7 years). I do like all the cities I have lived in. The place I am currently living is our two kids’ birthplace, and our real home. Of course it’s our favorite place, after our Japanese hometown.


Dr. Minakata: in Husky Bites, Dean Callahan will ask you to tell us about your dog!

Learn More:

Engineers Capture Sun in a Box

Break It Down: Understanding the Formation of Chemical Byproducts During Water Treatment

The Princess and the Water Treatment Problem

Darian Reed: From Volunteer to New Career

Michigan Tech civil engineering student Darian Reed is Logistics Section Chief for Houghton and Keweenaw Counties, supplying PPE to hospitals, nursing homes and local organizations.

COVID-19 has changed the lives of so many. For one Michigan Tech civil engineering undergraduate student, COVID-19 shaped his life in a way never imagined. 

Originally from Monroe, Michigan, Darian Reed came to the UP to pursue a degree in civil engineering at Michigan Tech and a career in the construction industry. Feeling a strong connection to the local community, this year Reed began volunteering his time and talents near campus, with Superior Search and Rescue. His contributions gained the recognition of Chris VanArsdale, a civil engineering alumnus and current doctoral student, who serves as the emergency management coordinator for both Houghton and Keweenaw counties. 

Needing to staff emergency response activities for both counties, VanArsdale asked Reed to serve as Logistics Section Chief—and Reed jumped at the chance. In this new role he receives resource need requests from local organizations, including hospitals and nursing homes. He submits their resource requests to the State, who will approve or deny the requests for masks, thermometers and other essential resources in the fight against COVID-19. 

Day in, day out, Darian Reed says he feels highly motivated. “This work provides me with the fuel I need to keep going amid the uncertainty of this pandemic.”

Reed also handles regional donations, including the 3D printed face shields printed at Michigan Tech. “I get to be the Santa Claus of the area, distributing the resources to all the requesting organizations,” says Reed. “I am happy to share that the State of Michigan has been able to fulfill requests for many resources to date, with gowns and no-touch thermometers as some of the few exceptions. This is great news for our community.”

Reed is now on the last leg of a long (and sometimes slow) process of requesting supplies. A local health care provider or non-profit first requests resources from the emergency manager, the supplies they cannot find or obtain themselves. These requests are entered into the State of Michigan’s online portal called MICIMS (Michigan Critical Incident Management System). As resources become available, they are shipped to Marquette, which is the central receiving hub in the UP. From there, resources are sorted by county and shipped to a regional hub (Greenland in the case of five counties in the Western UP Health Department’s area of responsibility). The National Guard breaks down these shipments and transports them to each county. At that point, it becomes the county’s responsibility to distribute the requested resources. That’s where Reed comes in.

Best of all for Reed, the experience has illuminated an entirely new career path. Because of his experiences this summer, his career goals have changed—from construction to emergency management. He still plans to complete his degree in Civil Engineering.

“The civil engineering skills I learned from my classes at Tech and my co-op experience with Kiewit last fall served me well. Managing construction crews and working with a variety of government agencies both have helped me to develop an important skill set.”

Reed is already on his way, completing several FEMA emergency management courses in his spare time, and taking classes for his Professional Emergency Manager certification. “I’ve been doing the training real-time, by learning online and then implementing what I have learned almost immediately,” he says.

“Through this experience I value the connection I am making with my adopted home more than ever before,” he says. “I also value this opportunity for personal growth.” When asked how others could follow in his footprints, he suggests volunteering for any local community event or with your local first responders. “Volunteers are needed and the more you show up, the more you can do. Great opportunities will come your way!”

We Reject Racism.

Michigan Tech stands together as a community to reject any actions steeped in racism, hatred and fear. These actions are repugnant to the College of Engineering. They have no place in our classrooms, labs or offices, nor in our society.

The College of Engineering believes that diversity in an inclusive environment is essential for the development of creative solutions to address the world’s challenges. 

Our faculty, staff and students are fully committed to diversity and inclusiveness. There is much work to be done and we all have a part to play in order for meaningful change to occur.

  • Janet Callahan, Dean, College of Engineering
  • Leonard Bohmann, Associate Dean, College of Engineering
  • Larry Sutter, Assistant Dean, College of Engineering
  • Sean Kirkpatrick, Chair, Dept. of Biomedical Engineering
  • Pradeep Agrawal, Chair, Dept. of Chemical Engineering
  • Audra Morse, Chair, Dept. of Civil and Environmental Engineering
  • Glen Archer, Chair, Dept. of Electrical and Computer Engineering
  • Jon Sticklen, Chair, Dept. of Engineering Fundamentals
  • John Gierke, Chair, Dept. of Geological and Mining Engineering and Science
  • Steve Kampe, Chair, Dept. of Materials Science and Engineering
  • Bill Predebon, Chair, Dept. of Mechanical Engineering – Engineering Mechanics
  • Walt Milligan, Interim Chair, Dept. of Manufacturing and Mechanical Engineering Technology

Read More:

Earth Day Continues! All are Welcome at these Copper Country (social-distance friendly) Special Events

Historical sign once hung on posts at the entrance to the city of Houghton, Michigan that says, Welcoome to the Copper country. You are now breathing the purest most vitalizing air on earth!
Courtesy of Michigan Tech Archives

There are still many Earth Day events coming up in Copper Country, and no matter where you live on this Earth, you’re invited. All are welcome.

  • Get Some Fresh Air: Nature is Open for Business
    Now through May 10 — Self-guided walk featuring Earth Day artwork from Houghton Elementary 4th grade students at Keweenaw Land Trust Paavola Wetlands. Can’t get there in person? Here’s the video tour.
  • Planet of the Humans
    April 21 and beyond: View “Planet of the Humans” (90 min.)  The film takes a harsh look at how the environmental movement has lost the battle through well-meaning but disastrous choices, including the belief that solar panels and windmills would save us, and giving in to corporate interests of Wall Street.
  • Invasive Plant Removal Challenge
    Now through June 20 — Stewardship Network Spring Invasive Plant Removal Challenge. Pull invasive species from your yard, natural area, anywhere. Submit location, number of people, and weight of invasive plants removed.
  • Great Lakes Bioblitz!
    Now through – May 20 — Great Lakes Bioblitz in your Backyard. Community members, families, and students across the Great Lakes states and Ontario are invited to participate in finding and identifying as many wild, living things as possible in a specific area (backyards and other outdoor spaces) during the next month
  • How Some are Turning the Stay at Home Order into a Positive Experience
    Saturday (April 25) from 6-8 p.m. — UPEC 2020 Celebrate the U.P. Presentations will be available later on YouTube. Speakers include Monica Lewis-Patrick, We The People of Detroit; Sarah Green, International Climate Action; Angie Carter, Western UP Food Systems Council, and several more. The event will wrap up with short videos on how some have turned the Stay at Home order into a positive experience.
  • What Happens to Houghton County Recyclables
    April 28, 7-8 p.m. — “What Happens to Houghton County Recyclables?” with Eagle Waste & Recycling owner, Alan Alba, and sponsored by Copper Country Recycling Initiative.
  • Native Plant Symposium: Monarch Butterflies
    April 30, 7 p.m. Native Plant Symposium Part 2, Sue Trull, botanist for the Ottawa Nat. Forest, will present “Monarchs & Milkweeds—All Hands-on Deck,” and “Using Native Plants to Support Pollinators” by Jackie Manchester-Kempke, of Houghton, an extension master gardener. Register here.
  • Book Club: Nature’s Best Hope
    May 7, 7 p.m.— Keweenaw Land Trust’s Natural History. Book Club discussion of Doug Tallamy’s “Nature’s Best Hope” via Zoom. (Password: 703851)
  • Five things you can keep out of the landfill:
    June 27  — (Stay tuned) The previously scheduled Waste Reduction Drive for Earth Day, sponsored by Michigan Tech’s student-run Sustainability House, will be rescheduled. In the meantime, keep collecting Styrofoam containers, plastic bottle caps, batteries and foil lined granola and energy bar wrappers. Read how they can be recycled here.

Deans’ Teaching Showcase: Jennifer Becker

Jennifer Becker
Jennifer Becker

In the midst of all of the challenges we’re facing, it’s important to continue to recognize the dedication of so many excellent instructors on Tech’s campus. That’s why Janet Callahan, dean of the College of Engineering, has selected our ninth Deans’ Teaching Showcase member: Jennifer Becker, an associate professor in the Civil and Environmental Engineering (CEE) Department.

Becker is known by her students for her passion for hands-on learning. As an example, she seeks to create interactive learning environments for her students. CEE1001 is taught only once a year and serves all civil engineering students as well as students in other majors interested in sustainability topics. Rather than teaching a giant section of the course, which may easily exceed enrollments of 90 students, she offers two sections of the course to increase instructor-student interactions. Throughout her class, Becker employs active learning techniques to better enable her students to learn the material. This work extends beyond her own students; last spring, she received the Behind the Scenes Award for helping enterprise groups with their project.

Becker also shines at the graduate level. Many programs assume graduate students will gain the knowledge they need to be successful in their research through real-time mentoring by their advisor, making lab courses rare. She does a service for all of the environmental engineering faculty by including a wet lab component in her wastewater course to provide hands-on experience on which students can build on when they begin their research. Becker also incorporates common industry and computer tools in her classes such as Biowin, a software used to model biological, physical and chemical processes in a plant.

CEE chair Audra Morse emphasizes this connection to industry, saying “In her CEE 4502 Wastewater Treatment Principles & Design course, Jennifer offers multiple field trip sessions to the local wastewater treatment facility to make sure all class members have the opportunity to participate in this real-world learning opportunity. The field trip supports the hands-on learning and software tools Jennifer incorporates in her class. The field trip hits home how the chemical, physical, and biological processes work together in a treatment plant to achieve our design objectives. More importantly, the field trip underscores the size and complexity of the things we build.”

In these and many other ways, it’s clear that Becker’s efforts to be accessible to students are extraordinary. She makes time in the evening to offer review sessions before exams to ensure students have possible opportunities to work out misconceptions and clear up confusion before the exam. Additionally, Becker holds her office hours in the CEE Student Success Center (SSC). Surveys of students have indicated they value the group sessions that occur naturally in this space.

One of Becker’s students echoes this, saying “Becker’s dedication to her students’ learning is just one quality that raises the bar for professors everywhere. Her willingness to help students succeed extends beyond the classroom, where she responds to emails promptly and accommodates students’ needs by taking time out of her busy schedule to help them, even at odd hours, until they feel confident with the material. Becker also aids students by letting them know exactly what is expected from them and holds them to a high standard, which demonstrates true concern for her students’ education.”

Dean Callahan summarizes Becker’s contributions well, saying “It is inspiring to see faculty such as Becker who are so highly engaged with their students. Her hard work is a great help of her students’ learning, both undergraduate and graduate students alike.”

Becker will be recognized at an end-of-term event with other showcase members, and is also a candidate for the CTL Instructional Award Series (to be determined this summer) recognizing introductory or large-class teaching, innovative or outside the classroom teaching methods, or work in curriculum and assessment.

NSBE Students Reach Out to Detroit Schools

Six members of Michigan Tech’s student chapter of the National Society of Black Engineers (NSBE) Pre-College Initiative (PCI) reached a total of 1,500 students during their 8th Annual Alternative Spring Break in Detroit March 9-11, 2020. Our students spent their spring break visiting six middle and high schools in Detroit to encourage students to consider college and a STEM (Science, Technology, Engineering, Math) career.

During the school day, the Michigan Tech students made classroom presentations to middle and high school students encouraging them to continue their education after high school, consider going to college or community college, and choose a STEM career path. After the school day ended, the NSBE students conducted K-8 Family Engineering events at two K-8 schools for students and their families, and at a Boys & Girls Club in Highland Park.

Participating students included:

The schools visited included:

  • Osborn High School
  • Detroit Arts HS
  • Mackenzie Middle School
  • University Prep Math & Science Middle School
  • University Prep Academy of the Arts Middle School
  • Neinas Academy Middle School

The NSBE students made a special stop at the Fauver-Martin Boys & Girls Club on the afternoon of March 10 to put on a hands-on engineering event for 30 K-12 students from across the city. This event was organized by Mike Reed from the Detroit Zoological Society, who also invited Michael Vaughn, the first president of MTU’s NSBE student chapter in 1995.

The goal of the NSBE classroom presentations and Family Engineering events are to engage, inspire, and encourage diverse students to learn about and consider careers in engineering and science through hands-on activities and providing ‘hometown’ role models (most of the participating NSBE students are from the Detroit area). These programs are designed to address our country’s need for an increased number and greater diversity of students skilled in STEM (math, science, technology, and engineering). 

This MTU NSBE chapter’s outreach effort is funded by General Motors and the Department of Civil & Environmental Engineering and coordinated by Joan Chadde, director of the Michigan Tech Center for Science & Environmental Outreach. High school students at these schools are also encouraged to apply to participate in a 5-day High School Summer STEM Internship at Michigan Tech from July 13-17, 2020 that is specifically targeting underrepresented students. Each participating student will be supported by a $700 scholarship. The Detroit high school students are also informed of scholarships available to attend MTU’s Summer Youth Programs.

For more information about the MTU-NSBE student chapter’s Alternative Spring Break, contact NSBE student chapter President, Bryce Stallworth or Chadde.

By Joan Chadde.