Tag: EF

Engineering Fundamentals

Biofuels and Dry Spells: Switchgrass Changes During a Drought

High yields. A deep root system that prevents soil erosion and allows for minimal irrigation. The ability to pull large amounts of carbon out of the air and sequester it in the soil. Beneficial effects on wildlife, pollination, and water quality. Perennial grasses, such as switchgrass and elephant grass, are wonderful in many ways and especially promising biofuel feedstocks. But that promise, a team of researchers discovered, may evaporate during a drought.

“The characteristics of any living organism are linked to their genetics and the environment they experience during growth,” says Rebecca Ong, an assistant professor of chemical engineering at Michigan Technological University. “Bioenergy production is no different. It’s a chain where every link, including the feedstock characteristics, influences the final product—the fuel.”

Ong is both a chemical engineer and a biologist. She holds a unique perspective on how the bioenergy system fits together, which comes in handy, especially now, in light of a recent puzzling discovery.

“Plants have lower biomass yields during a drought. You understand this when you don’t need to mow your lawn after a dry spell,” she explains. “The same is true with switchgrass. Besides the expected effect on crop yields, we were completely unable to produce fuel from switchgrass—using one of our standard biofuel microbes—grown during a major drought year.”

“At the lab scale this is an interesting result. But at the industrial scale, this could potentially be devastating to a biorefinery,” she says.

Ong, her research team, and colleagues within the Great Lakes Bioenergy Research Center (GLBRC), a cross-disciplinary research center led by the University of Wisconsin–Madison, are making efforts to understand, pulling in researchers from across the production chain to study the problem. 

Ong is the only Michigan Tech faculty member in the GLBRC. “Our team was able to identify some of the compounds formed in the plant in response to drought stress, contributing to the inhibition. But plant materials are very complex. We’ve only scratched the surface of what is in there. We have much more to learn.”

The first step, she says, is to understand what inhibits fuel production. “Once we know that, we can engineer solutions: new, tailor-made plants with improved characteristics, as well as modifications to processing, such as the use of different microbes, to overcome these issues.”

Ong points out that in the U.S., gasoline is largely supplemented with E10 ethanol, derived from sugars in corn grain. However renewable fuels can be produced from any source of sugars—including perennial grasses, which if planted on less productive land do not conflict with food production.

“Ultimately, if we are to replace fossil energy in the long term, we need a broad alternative energy portfolio,” says Ong. “We need industry to succeed. We are engaging in highly collaborative research to ensure that happens.”


Sustainable Foam: Coming Soon to a Cushion Near You

Chemical engineering major Lauren Spahn presented her research at the Michigan Tech Undergraduate Research Symposium last spring. Her lignin project was supported by Portage Health Foundation, the DeVlieg Foundation, and Michigan Tech’s Pavlis Honors College.

Most polyurethane foam, found in cushions, couches, mattress, insulation, shoes, and more, is made from petroleum. Soon, with help from undergraduate researcher and chemical engineering major Lauren Spahn, it will also be environmentally-friendly, sustainable, and made from renewable biomass.

Spahn works in the Biofuels & Bio-based Products Laboratory at Michigan Technological University, where researchers put plants—and their lignin—to good use. The lab is directed by Dr. Rebecca Ong, an assistant professor of chemical engineering.

Q&A with Lauren Spahn

Q: Please tell us about the lab.

A: “Our goal in working with Dr. Ong is to develop sustainable industries using renewable lignocellulosic biomass⁠—the material derived from plant cell walls. There are five of us working on Dr. Ong’s team. We develop novel co-products from the side streams of biofuel production, and pulp and paper production. We’re trying to make good use of the leftover materials.

 

Lignocellulose, aka biomass, is the dry matter of plants. Energy crops like this Elephant Grass, are grown as a raw material for the production of biofuels.

Q: What kind of research are you doing?

A: My particular research project involves plant-based polyurethane foams. Unlike conventional poly foams, bio-based foams are generated from lignin, a renewable material. Lignin is like a glue that holds wood fibers together. It has the potential to replace petroleum-derived polymers in many applications. In the lab, we purify the lignin from something called “black liquor”⁠. It’s not what sounds like. Black liquor is a by-product from the kraft process when pulpwood is made into paper. Lignin is collected by forcing dissolved lignin to precipitate or fall out of the solution (this is the opposite of the process of dissolving, which brings a solid into solution). By adjusting the functional properties of lignin during the precipitation process, we hope to be able to tailor the characteristics of resulting foams. It’s called functionalization.

Typically in the lab process, functionalization occurs on lignin that has already been purified. What we hope to do is integrate functionalization into the purification process, to reduce energy and raw material inputs, and improve the economics and sustainability of the process, too.

Purified lignin, used to make bio-foam. The resulting foam will likely be light or dark brown in color because of the color of the lignin. It would probably be used in applications where color does not matter (such as the interior of cushions/equipment).

Q: How did you get started in undergraduate research?

A: I came to Michigan Tech knowing I wanted to get involved in research. As a first-year student, I was accepted into the Undergraduate Research Internship Program (URSIP), through the Pavlis Honors College here at Tech. Through this program I received funding, mentorship, and guidance as I looked to identify a research mentor. 

Q: How did you find Dr. Ong, or how did she find you?

A: I wanted to work with Dr. Ong because I found the work in her lab to be very interesting and relevant to the world we live in, in terms of sustainability. She was more than willing to welcome me into the lab and assist me in my research when I needed it. I am very thankful for all her help and guidance. 

Q: What is the most challenging and difficult part of the work and the experience?

A: Not everything always goes according to plan. Achieving the desired result often takes many iterations, adjustments, and even restructuring the experiment itself. After a while, it can even become discouraging.

Lignin is like a glue that holds wood fibers together, giving trees their shape and stability, and making them resistant to wind and pests. Pictured above, a biofuel plantation in Oregon.

Q: What do you do when you get discouraged? How do you persevere?

A: I start thinking about my goals. I enjoy my research—it’s fun! Once I remind myself why I like it, I am able to get back to work. 

Q: What do you enjoy most about research?

A: I enjoy being able to run experiments in the lab that directly lead to new designs, processes, or products in the world around me. It’s wonderful to have the opportunity to think up new product ideas, then go through the steps needed to implement them in the real world. 

Q: What are your career goals and plans?

A: I plan to go to graduate school for a PhD in chemical engineering, to work in R&D for industry. I am very passionate about research—I want to continue participating in research in my professional career.


Lignin at the nanoscale, imaged with transmission electron microscopy (TEM). Raisa Carmen Andeme Ela, a PhD candidate working in Dr. Ong’s lab, generated this image to examine the fundamental mechanisms driving lignin precipitation.

Q: Why did you choose engineering as your major, and why chemical engineering?

A: I chose chemical engineering because the field is so large. Chemical engineers can work in industry in numerous areas. I liked the wide variety of work that I could enter into as a career. 

Michigan Tech translates research into the new technologies, products, and jobs that move our economy forward.

Did you know?

  • Michigan Tech has more than 35 research centers and institutes
  • 20 percent of all Michigan Tech patent applications involve undergraduate students
  • Students in any engineering discipline are welcome to give research a try
  • Research expenditures at Michigan Tech—over $44 million-—have increased by 33% over the last decade, despite increased competition for research funding. 
  • Michigan Tech research leads to more invention disclosures—the first notification that an invention has been created—than any other research institution in Michigan.



Brad King: Space, Satellites and Students

Pictured: the Auris signal trace, soon to be explained by Dr. Lyon (Brad) King on Husky Bites.

Lyon (Brad) King shares his knowledge on Husky Bites, a free, interactive webinar this Monday, May 18 at 6 pm. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Oculus deployed! In June 2019 Michigan Tech alumnus and Air Force Research Laboratory Space Systems Engineer Jesse Olson, left, celebrates with Aerospace Enterprise advisor Brad King. King’s son Jack was also on hand for the momentous occasion of the launch.

Turning dreams into reality is a powerful motivator for Lyon (Brad) King. He’s the Richard and Elizabeth Henes Professor of Space Systems in the Department of Mechanical Engineering-Engineering Mechanics, and leader of Michigan Tech Aerospace—a collection of research, development, and educational labs dedicated to advancing spacecraft technology.

King specializes in spacecraft propulsion — and the launching of student careers. He mentors a large team of graduate students in his research lab, the Ion Space Propulsion Lab, where teams develop next-generation plasma thrusters for spacecraft. Off campus, at the MTEC SmartZone, King is cofounder and CEO of the fast-growing company, Orbion Space Technology.

As the founder and faculty advisor of Michigan Tech’s Aerospace Enterprise, King empowers undergraduate students to design, build, and fly spacecraft, too. One of the team’s student-built satellites (Oculus) is now in orbit; their second small satellite (Stratus) is due to launch in March 2021, and a third (Auris) now in process.

“The desire to explore space is what drives me. Very early in my studies I realized that the biggest impediment to space exploration is propulsion. Space is just so big it’s hard to get anywhere. So I dedicated my professional life to developing new space propulsion technologies.”

Professor Lyon (Brad) King, Michigan Tech

King has served as the Enterprise advisor ever since a couple of students came to him with the idea to form a team nearly two decades ago. “My current role now is more that of an outside evaluator,” he says. “The team has taken on a life of its own.”

Like all Enterprise teams at Michigan Tech, Aerospace Enterprise is open to students in any major. “It’s important for students to learn how to work in an interdisciplinary group,” says King. “In the workplace, they will never be on a team where every member has the same expertise. To design, build, manage and operate a satellite requires mechanical, electrical, computer science, physics, materials, everything — it really crosses a lot of boundaries and prepares them for a career.”

Adds King: “Michigan Tech has a history and reputation for hands-on projects, particularly its Enterprise Program. Our students don’t just write papers and computer programs. They know how to turn wrenches and build things. That’s been deeply ingrained in the University culture for years.” 

Last, but not least: “Aerospace Enterprise has a leadership and management hierarchy that is self-sustaining,” says King. “Current leaders are constantly working to mentor their successors so we have continuity from year-to-year.” 

“Dr. King provides excellent mentoring and high-level direction, but does not give students all the answers. It’s up to the students to figure it out. We work in small teams, which forces us to take on more responsibility. We’re thrown off the deep end. It’s hard, but worth it.”

Sam Baxendale, spoken as a former student. He’s now an engineer at Orbion Space Technologies
The Aerospace Enterprise team at Michigan Tech enjoys some well-deserved downtime at McLain State Park on Lake Superior.

The New Space Era

Commercialization is driving aerospace expansion in Michigan and across the nation. “We were ahead of it,” says King. “We certainly were feeding it and played a part in causing it. MTU’s products — which are our graduates — are out there, making this happen.” Aerospace Enterprise alumni are engineers, managers, technology officers and research scientists in a diverse array of aerospace-related industries and institutions, from the U.S. Army, U.S. Air Force and NASA to SpaceX, both startups and major manufacturers. King himself has hired several of his former students at Orbion Space Technology.

“The desire to explore space is what drives me,” says Lyon (Brad) King, Henes Professor of Space Systems at Michigan Technological University

Q: When did you first get into engineering? What sparked your interest?

A: I have always been interested in building things — long before I knew that was called “engineering.” I don’t recall when I became fascinated with space but it was at a very early age. I have embarrassing photos of me dressed as an astronaut for halloween and I may still even have an adult-sized astronaut costume somewhere in my closet — not saying. The desire to explore space is what drives me. Very early in my studies I realized that the biggest impediment to space exploration is propulsion. Space is just so big it’s hard to get anywhere. So I dedicated my professional life to developing new space propulsion technologies. There is other life in our solar system. That is a declarative statement. It’s time that we find it. The moons of Jupiter and Saturn hold great promise and I’m determined to see proof in my lifetime.

Q: Can you tell us more about your growing up? Any hobbies?

A: I was born and raised just north of Houghton (yes, there actually is some habitable environment north of Houghton). I received my BS, MS, and PhD from the University of Michigan. I spent time traveling around the country working at NASA in Houston, NIST in Boulder, and realized that all of my personal hobbies and proclivities were centered around the geography and climate of northern Michigan. I returned in 2000 and began my career as a professor at MTU. I enjoy fishing, boating, hockey, and spent more than 15 years running my dogsled team all over the Keweenaw Peninsula.


Michigan Tech’s Three Student-Built Satellites

OCULUS-ASR, a microsatellite now in orbit, provides new info to the Air Force. “It is the first satellite mission dedicated to helping telescope observatories understand what they are imaging using a cooperative target. “It’s a very capable little vehicle. There’s a lot packed into it.”

Aerospace Enterprise rendering of Stratus, a miniaturized satellite developed by the team. It will be launched from the International Space Station in March 2021.

Not hard to see how CubeSats get their name. Stratus is a 3U spacecraft, which means it’s composed of three units. This photo was taken in fall 2019.

STRATUS, a miniaturized satellite, will image atmospheric clouds to reconcile climate models. It’s funded by NASA’s Undergraduate Student Instrument Program and the CubeSat Launch Initiative. STRATUS will be carried to the International Space Station inside the SpaceX Dragon cargo capsule by a Falcon 9 rocket. The Dragon will dock to the ISS where STRATUS will be unloaded by the crew. STRATUS will then be placed in the Kibo Module’s airlock, where the Japanese Experiment Module Remote Manipulator System robotic arm will move the satellite into the correct position and deploy it into space. All this on March 21. Stay tuned!

Aerospace Enterprise rendering of its newest microsatellite, Auris, now in the works.

AURIS, a microsatellite, is designed to monitor and attribute telecommunications signals in a congested space environment. Funding comes from the Air Force Research Lab (AFRL)’s University Nanosatellite Program.

Huskies in Space

Michigan Tech’s Aerospace Enterprise team designed their own logo.

Learn more about the team and its missions on Instagram and Facebook.

Find out how to join.

Read more about Aerospace Enterprise in Michigan Tech News:

And Then There Were Two: MTU’s Next Student Satellite Set to Launch in 2021

Enterprise at MTU Launches Spacecraft—and Careers

Countdown. Ignition. Liftoff. Huskies in Space!

Mission(s) AccomplishedMichigan Tech’s Pipeline to Space

Winning Satellite to be Launched into Orbit


My Mother’s Hands

Author's hand outstreched over a jigsaw puzzle on a card table, with Husky dog far in the background,  to show her knuckly fingers and her mother's ring

Okay, so I have my mother’s hands. May she rest in peace. For her fiftieth birthday, many years ago, us four daughters decided to get her a nice piece of jewelry. We shopped, and together we tried out a bunch of rings. 

My other sisters’ hands are more delicate than mine. My hands call to mind a worker, or farmer, or crafter, hands with knuckles and calluses. While shopping, we decided my hands were the best model for the ring for our mother, and so I was the odd model on this shopping expedition, with the jewelry merchants looking at me with eyebrow askance. With their beautifully groomed hands they examined mine, seeking different shapes and kinds of rings to try on, to find something that would balance my knuckly fingers.

One day, many years later, I was inside watching some commotion in the driveway. My son needed to add water to his rusty old radiator. The cap was stuck. My son, his dad, and a friend were standing around the car, hood up, scratching their heads. 

Watching this from inside the house, I figured it wouldn’t hurt to have a go. Grabbing a kitchen towel, I wandered outside. Approaching the car, I asked about the problem, then casually swooped in with my towel and my mother’s hands. 

I doubled up the kitchen towel over the four-pronged, blunt radiator knob, grasped it with my dominant hand, then added my other hand over top, all fingers locking in to seal the strength. I locked wrists, forearms, elbows to my shoulders and slowly rotated my torso. Of course the cap gave way. I straightened up, pulled off the towel, brushed off the thanks, and walked back into the house.

From my dad, I got the engineer’s outlook, and from my mom these strong, wise hands. From both of them, I was given ample opportunity to try anything, fail, and try again. 

Where did I learn to do this, I wonder? To not use my wrist and hand alone? The feeling wasn’t pride exactly, but closer to gratitude—for my parents who taught me to roof and landscape, and to use my head to solve problems. From my dad, I got the engineer’s outlook, and from my mom these strong, wise hands. From both of them, I was given ample opportunity to try anything, fail, and try again. 

I am now an engineering professor and have been given tremendous responsibility as a dean. Problem solving is what we teach engineering students, mingled with theory and design. We also give them ample opportunity to learn by doing. Yet, the largest part of their problem-solving “knack,” will come from the projects they already did, well before arriving in college.

All the tasks given to a child, the forced labor assigned to teens, and the challenges you take on as an adult, add up. I remember Dad giving instructions with no more detail than, “Take down this wall,” and I could not have wished for a better engineering teacher. We lost him too soon, when he was just 48, to cancer.

I wear her ring now and it fits me well. I could never fill her shoes, but I can fill her gloves. Around the blister earned from raking this weekend and the snagged skin from a thorn, I look at my mother’s hands and imagine them still shuffling and playing cards, the way she did when our work was through. 

My mother passed ten years ago this month. Miss you Mom! Still feel your strong—and gentle—touch.

Do you have your own stories about your mom, or dad, to share? Please email me. I would love to hear them, callahan@mtu.edu.

Janet Callahan, Dean
College of Engineering
Michigan Tech



John Gierke: How the Rocks Connect Us

Pictured: Hungarian Falls in Michigan’s Upper Peninsula. Credit: Jessica Rich, a Michigan Tech graduate and member of the MTU Geology Club

John Gierke shares his knowledge on Husky Bites, a free, interactive webinar this Monday, May 11 at 6 pm. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

John Gierke stands with water behind him, on the shore of Portage Canal.
Water was John Gierke’s first love growing up. Now he is Professor and Chair of the Department of Geological and Mining Engineering and Sciences at Michigan Tech, specializing in hydrogeology. Here he stands at the shore of Portage Canal, on campus.

A self-professed “Yooper graduate of the school of hard rocks,” John Gierke chairs the Department of Geological and Mining Engineering and Sciences (GMES) at Michigan Technological University. He’s also an alumnus, earning a BS and MS in Civil Engineering, and a PhD in Environmental Engineering, all at Michigan Tech.

Q: How do the rocks connect us?

A: The geology of the Keweenaw and Western Upper Peninsula is quite unique and different than the Eastern Upper Peninsula and Lower Peninsula. The geology of the Keweenaw is more exposed and accessible. The experience of spending time in the Copper Country is enhanced if you understand more about the forces of nature that formed this beautiful place. While geologists are knowledgeable in identifying rocks, their truest natures are also wrapped in a yearning to be outdoors, exceptional observation skills, and insatiable curiosity to understand Earth processes. The processes that led to the geological formations that lie beneath us–and shaped our landscapes–are what dictated many of the natural resources that are found where each of us live.

Q: When did you first get into engineering? What sparked your interest?

A: I began studying engineering at Lake Superior State College (then, now University) in the fall of 1980, in my hometown of Sault Ste. Marie. In those days their engineering program was called: General Engineering Transfer, which was structured well to transfer from the old “Soo Tech” to “Houghton Tech,” terms that some old timers still used back then, nostalgically. I transferred to Michigan Tech for the fall of 1982 to study civil engineering with an emphasis in environmental engineering, which was aligned with my love of water (having grown up on the St. Mary’s River).

Despite my love of lakes, streams, and rivers, my technical interests evolved into an understanding of how groundwater moves in geological formations. I used my environmental engineering background to develop treatment systems to clean up polluted soils and aquifers. That became my area of research for the graduate degrees that followed, and the basis for my faculty position and career at Michigan Tech, in the Department of Geological and Mining Engineering and Sciences (those sciences are Geology and Geophysics). My area of specialty now is Hydrogeology.

Q: Can you tell us more about your growing up? Any hobbies?

A: Growing up I fished weekly, sometimes daily, on the St. Mary’s River throughout the year. Sault Ste. Marie is bordered by the St. Mary’s River on the north and east. In the spring-summer-fall, I fished from shore or a canoe or small boat. In the winter, I speared fish from a shack just a few minutes from my home or traveled to fish through the ice in some of the bays. I was a fervent bird hunter (grouse and woodcock) in the lowlands of the EUP, waterfowl in the abundant wetlands, and bear and deer (unsuccessfully until later in life). I now live on a blueberry farm that is open to the public in August for U-Pick. I used my technical expertise to design, install, and operate a drip irrigation system that draws water from the underlying Jacobsville Sandstone aquifer.

Want to know more about Husky Bites? Read about it here.


Husky Bites: Join Us for Supper This Summer (Mondays at 6)!

A real Husky Dog sitting at a table covered with a white tablecloth, with a plate and bowl full of dog biscuits in front of it The dog is wearing a red and black checked flannel shirt, and wearing black horn-rimmed glasses

Craving some brain food? Join Dean Janet Callahan and a special guest each Monday at 6 p.m. EST for a new, 20-minute interactive Zoom webinar from the College of Engineering at Michigan Technological University, followed by Q&A. Grab some supper, or just flop down on your couch. This family friendly event is BYOC (Bring Your Own Curiosity). All are welcome. Get the full scoop and register⁠—it’s free⁠—at mtu.edu/huskybites.

The special guests: A dozen engineering faculty have each volunteered to present a mini lecture for Husky Bites. They’ll weave in a bit of their own personal journey to engineering, too.

“We created Husky Bites for anyone who likes to learn, across the universe,” says Callahan. “We’re aiming to make it very interactive, with a “quiz” (in Zoom that’s a multiple choice poll), about every five minutes. “Everyone is welcome, and bound to learn something new. We are hoping entire families will enjoy it,” she adds. “We have prizes, too, for near perfect attendance!”

Topics include: Space, Satellites, and Students; Shipwrecks and Underwater Robots; A Quieter Future (Acoustics); Geospatial Wizardry; Color-Changing Potions and Magical Microbes; Scrubbing Water, There’s Materials Science and Engineering, in my Golf Bag, Biomedical Engineering the Future, How Do Machines Learn, Robotics, Math in Motion, and more. Get the full scoop and register (it’s free) at mtu.edu/huskybites

The series kicks off on Monday, May 11 with a session from GMES professor and chair John Gierke, a self-professed “Yooper graduate of the school of hard rocks.”

In his Husky Bites session, “How the Rocks Connect Us,” Gierke will talk about how the geology of the Keweenaw is more exposed and accessible. “The experience of spending time in the Copper Country is enhanced if you understand more about the forces of nature that formed this beautiful place,” he says. “The processes that led to the geological formations that lie beneath us and shaped our landscapes are what dictated many of the natural resources that are found where each of us live.” Gierke was born in the EUP (the Soo, aka Sault Sainte Marie) and graduated from Michigan Tech. He will provide practical explanations for why the mines are oriented as they are, where water is more prevalent—and the geological features that lead to waterfalls. You can read all about it here.

Other guests on Husky Bites include engineering faculty L. Brad King, Gordon Parker, Rebecca Ong, Guy Meadows, Andrew Barnard, Tony Pinar, Daisuke Minakata, Jeremy Bos, Joe Foster, Smitha Rao, and Steve Kampe.

Want to see the full schedule? Just go to mtu.edu/huskybites. You can register from there, too.


Did You Sign Your Name on This Door?

Now, I live close to campus, in a stately banker’s home on Houghton Avenue.

We bought Mrs. Frim’s house (Mrs. Frimodig) in 2018. At one point, the home had been famously rented out to Michigan Tech alumni, many who signed their names on the attic door. Widowed after Mr. Frim unexpectedly passed at an early age, Mrs. Frim earned a living in this way.

Roger Smith, an engineering alumnus who grew up in Houghton, weeded for Mrs. Frim as a young man. I met him at Reunion 2018; he relayed to me that “She had a nice side garden in the south-east backyard – with lots of gladiolas. I spent a lot of hours toiling there…at 15-25 cents an hour!”

Sadly, that poor side garden has turned into goutweed heaven—an invasive species. I started attacking it yesterday. I read that I can “exhaust it,” or dig it up! So I exhausted myself digging it up and only made a small start; it will take the next two years to recover that patch of garden. Ha-ha, says the goutweed…. 

Did any of you happen to carve your name on the attic door? If so, please let me know! Take a look at all five panels, for a closer look. Maybe you’ll see someone you know!

If you find your name, or know more about this door, please email me. I would love to hear the stories; callahan@mtu.edu.

Janet Callahan, Dean
College of Engineering
Michigan Tech




Earth Day Continues! All are Welcome at these Copper Country (social-distance friendly) Special Events

Historical sign once hung on posts at the entrance to the city of Houghton, Michigan that says, Welcoome to the Copper country. You are now breathing the purest most vitalizing air on earth!
Courtesy of Michigan Tech Archives

There are still many Earth Day events coming up in Copper Country, and no matter where you live on this Earth, you’re invited. All are welcome.

  • Get Some Fresh Air: Nature is Open for Business
    Now through May 10 — Self-guided walk featuring Earth Day artwork from Houghton Elementary 4th grade students at Keweenaw Land Trust Paavola Wetlands. Can’t get there in person? Here’s the video tour.
  • Planet of the Humans
    April 21 and beyond: View “Planet of the Humans” (90 min.)  The film takes a harsh look at how the environmental movement has lost the battle through well-meaning but disastrous choices, including the belief that solar panels and windmills would save us, and giving in to corporate interests of Wall Street.
  • Invasive Plant Removal Challenge
    Now through June 20 — Stewardship Network Spring Invasive Plant Removal Challenge. Pull invasive species from your yard, natural area, anywhere. Submit location, number of people, and weight of invasive plants removed.
  • Great Lakes Bioblitz!
    Now through – May 20 — Great Lakes Bioblitz in your Backyard. Community members, families, and students across the Great Lakes states and Ontario are invited to participate in finding and identifying as many wild, living things as possible in a specific area (backyards and other outdoor spaces) during the next month
  • How Some are Turning the Stay at Home Order into a Positive Experience
    Saturday (April 25) from 6-8 p.m. — UPEC 2020 Celebrate the U.P. Presentations will be available later on YouTube. Speakers include Monica Lewis-Patrick, We The People of Detroit; Sarah Green, International Climate Action; Angie Carter, Western UP Food Systems Council, and several more. The event will wrap up with short videos on how some have turned the Stay at Home order into a positive experience.
  • What Happens to Houghton County Recyclables
    April 28, 7-8 p.m. — “What Happens to Houghton County Recyclables?” with Eagle Waste & Recycling owner, Alan Alba, and sponsored by Copper Country Recycling Initiative.
  • Native Plant Symposium: Monarch Butterflies
    April 30, 7 p.m. Native Plant Symposium Part 2, Sue Trull, botanist for the Ottawa Nat. Forest, will present “Monarchs & Milkweeds—All Hands-on Deck,” and “Using Native Plants to Support Pollinators” by Jackie Manchester-Kempke, of Houghton, an extension master gardener. Register here.
  • Book Club: Nature’s Best Hope
    May 7, 7 p.m.— Keweenaw Land Trust’s Natural History. Book Club discussion of Doug Tallamy’s “Nature’s Best Hope” via Zoom. (Password: 703851)
  • Five things you can keep out of the landfill:
    June 27  — (Stay tuned) The previously scheduled Waste Reduction Drive for Earth Day, sponsored by Michigan Tech’s student-run Sustainability House, will be rescheduled. In the meantime, keep collecting Styrofoam containers, plastic bottle caps, batteries and foil lined granola and energy bar wrappers. Read how they can be recycled here.

Design Expo 2020 Award Winners

A view of campus from across the Portage Canal, with light snow, and open water.

More than 1,000 students in Enterprise and Senior Design showcased their hard work last Thursday, April 16 at Michigan Tech’s first-ever virtual Design Expo. Teams competed for cash awards totaling nearly $4,000. Judges included corporate representatives, community members and Michigan Tech staff and faculty.

The College of Engineering and the Pavlis Honors College are pleased to announce award winners, below. Congratulations and thanks to ALL teams for a very successful Design Expo 2020. But first, a few important items:

Design Expo Video Gallery

Be sure to check out the virtual gallery, which remains on display at mtu.edu/expo.

20th Anniversary of Design Expo
This year marked the 20th anniversary of Design Expo. Read the Michigan Tech news story here.

SOAR’s SSROV Royale deployed in summers on Isle Royale National Park as part of the Enterprise partnership.
SOAR’s SSROV Royale deployed in summers on Isle Royale National Park as part of the Enterprise partnership

Special Note:
In addition to all the Michigan Tech teams, SOAR, a high school Enterprise from Dollar Bay High School in Michigan’s Upper Peninsula, also took part in this year’s virtual Design Expo. Advised by teacher Matt Zimmer, the team designs, builds, and deploys underwater remote operated vehicles (ROVs). SOAR partners with local community organizations to monitor, research, and improve the local watershed. Their clients include Isle Royale National Park, Delaware Mine, OcuGlass, and Michigan Tech’s Great Lakes Research Center. Check out the SOAR video here (SOAR is team 124).


Now, without further ado, here are the Design Expo award results!


ENTERPRISE AWARDS
Based on video submissions

Team photo with Baja vehicle outside on campus at Michigan Tech with Portage Canal in the background.

First Place – $500
Blizzard Baja Enterprise
Team Leaders: Olivia Vargo, Mechanical Engineering, and Kurt Booms, Mechanical Engineering Technology
Advisor: Kevin Johnson, Mechanical Engineering Technology
Sponsors: General Motors, Aramco Americas, DENSO, SAE International, Magna, Fiat Chrysler Automobiles, Halla Mechatronics, Meritor, Oshkosh Corporation, Ford Motor Company, John Deere, Nexteer, IPETRONIK, FEV, Milwaukee Tool, Altair, Henkel, ArcelorMittal, TeamTECH, and Keysight Technologies
Overview: Building and innovating a single-seat, off-road vehicle for the SAE Collegiate Design Series-Baja events is the team’s focus. After passing a rigorous safety and technical inspection, they compete on acceleration, hill climb, maneuverability, suspension and endurance. The team also organizes and hosts the Winter Baja Invitational event, a long-standing university tradition dating back to 1981.


Team photo

Second Place – $300
Mining INnovation Enterprise (MINE)

Team Leaders: George Johnson, Mechanical Engineering; and Breeanne Heusdens, Geological Engineering
Advisor: Paulus Van Susante, Mechanical Engineering-Engineering Mechanics
Sponsors: Cignys, Cummins, General Motors, MEEM Advisory Board, Michigan Scientific Corporation, Michigan Space Grant Consortium, Milwaukee Tool, MISUMI, NASA, Raytheon, Wayland Wildcats
Overview: MINE designs, tests, and implements mining innovation technologies—in some hard-to-reach places—for industry partners. The team is developing a gypsum process to mine water on Mars funded by a grant from NASA. Gypsum is 20 percent water by weight and is found abundantly on the surface of Mars. A geological sub-team is developing methodology for deep sea mining research. Last but not least, MINE is creating a robot for the NASA Lunabotics competition, held every year at the Kennedy Space Center with 50 university teams in attendance.


Team photo near the Husky statue at Michigan Tech, in the snow.

Third Place – $200 (tie)
Innovative Global Solutions
(IGS)
Team Leaders: Nathan Tetzlaff, Mechanical Engineering; Marie Marche, Biomedical Engineering
Advisors: Radheshyam Tewari, Mechanical Engineering-Engineering Mechanics; and Nathan Manser, Geological and Mining Engineering and Sciences
Sponsors: Cummins, Milwaukee Tool, and Enterprise Manufacturing Initiative funded by General Motors
Overview: IGS pursues solutions for the needs of developing countries, making contributions toward solving the Grand Challenges, an initiative set forth by the National Academy of Engineering. The team has designed, built and tested an innovative vaccine container to improve the transport of viable vaccines and increase accessibility. They have developed a low-cost, multifunctional infant incubator to help decrease infant mortality rates. They are also working on an open-source-based 3D printer that can recycle plastic to meet basic community needs.


Stratus: Detailed render of the Stratus spacecraft deployed on-orbit.

Third Place – $200 (tie)
Aerospace Enterprise

Team Leaders: Troy Maust, Computer Engineering; and Matthew Sietsema, Electrical Engineering
Advisor: L. Brad King, Mechanical Engineering-Engineering Mechanics
Sponsors: Air Force Research Laboratory, NASA
Overview: Space mission design and analysis, vehicle integration, systems engineering, and comprehensive ground-testing and qualification are all going on within the Aerospace Enterprise at any given time. All members contribute toward achieving specific project goals. The Auris mission demonstrates the technical feasibility of a CubeSat to provide situational data, in collaboration with the Air Force Research Laboratory (AFRL). The Stratus mission involves collecting atmospheric and weather data from a CubeSat in collaboration with NASA—a pathfinder toward developing new, complex space systems leveraging the low-cost and small size of CubeSats to achieve the performance of traditional, monolithic systems.


Lost in Mazie Mansion, a game created by HGD shows an illustration of Mazie (small figure with golden hair, standing in what looks like a library, with 3 sets of bookcases behind her.

Honorable Mention – $100
Husky Game Development (HGD)

Team Leaders: Colin Arkens and Xixi Tian, Computer Science
Advisor: Scott Kuhl, Computer Science
Sponsor: Pavlis Honors College
Overview: Developing video games is the name of the game for HGD. Each year, the Enterprise breaks up into subteams of around six students who experience a full game development cycle, including ideation, design, and end product. HGD explores a wide variety of video game engines and platforms, including Windows, Android, Xbox, and an experimental Display Wall.


SENIOR DESIGN AWARDS
Based on video submissions

Blueprint-style drawing of the team's eddy current inspection in-line integration tester.

First Place – $400
Eddy Current Inspection In-line Integration

Team Members: Brett Hulbert, Austin Ballou, Britten Lewis, Nathan Beining, Philip Spillman and Sophie Pawloski, Mechanical Engineering
Advisor: Wayne Weaver, Mechanical Engineering- Engineering Mechanics
Sponsor: MacLean-Fogg Component Solutions-Metform
Overview: Eddy current testing (ECT) is a non-destructive method for testing metal surfaces for defects using electromagnetic induction to detect surface flaws in conductive materials. The team was tasked with developing an eddy current tester that would non-destructively test a washer for surface cracks and flaws before it is assembled with a nut. They created a testing operation that spins, tests, and ejects washers based on whether they pass or fail, all within the existing assembly cell.


CAD drawing of the team's
hospital washer with data optimization sensors.

Second Place – $250
Hospital Washer Auto Sampler Usage & Data Optimization
Team Members: Nick Golden and Jeremy Weaver, Biomedical Engineering; Jack Ivers, Mechanical Engineering
Advisors: Bruce Lee and Sangyoon Han, Biomedical Engineering
Sponsor: Stryker
Overview: Hospitals use wash systems to clean and sterilize instruments after use. Factors of the wash environment can harm surgical instruments. To solve this problem, the team designed a device that actively senses conditions inside a hospital washer to provide information on the effects of the wash environment, allowing for wash cycle optimization.


A 3D-printed pattern cast in aluminum by sponsor Mercury Marine

Third Place – $150
Direct Casting with Additive Manufactured Patterns
Team Members: James Driesenga, Riley Simpson, Camden Miner, Zach Schwab, TC Swittel, and Sean Frank, Mechanical Engineering
Advisor: Bob Page, Mechanical Engineering-Engineering Mechanics
Sponsor: Mercury Marine
Overview: The team developed a lost-foam style casting process that uses a 3D printed pattern instead of expanded polystyrene in metal casting. The use of expanded polystyrene allows for complete part filling, but cost and time required to create a new pattern are high. The 3D printing of patterns eradicates the need for pattern tooling and significantly reduces the time required to produce a pattern.


Medtronic’s radiofrequency ablation platform: Accurian System

Honorable Mention (1) – $100
Radiofrequency Ablation Modeling and Validation of Cannula Design
s
Team Members: Clare Biolchini, Matthew Colaianne, and Ellen Lindquist, Biomedical Engineering; Samuel Miller, Electrical Engineering
Advisor: Jeremy Goldman, Biomedical Engineering
Sponsor: Medtronic
Overview: Predictable lesion formation during radiofrequency (RF) ablation for pain control is a function of many factors and the subject of decades of research. Of specific interest to Medtronic is lesion formation in non-homogeneous tissues and structures. The team developed mathematical models and physical model validation for treatment scenarios, including knees and shoulders. Photo courtesy of Medtronic.


Solidworks model of deicing fluid collection cart

Honorable Mention (2) – $100
Airport Needs Design Challenge
Team Members: Derek Cingel, Jared Langdon, Bryce Leaf, Ruth Maki, and Douglas Pedersen, Mechanical Engineering
Advisor: Paul van Susante, Mechanical Engineering-Engineering Mechanics
Sponsor: Airport Cooperative Research Program
Overview: To help reduce the contamination of deicing fluid in small airports, the team developed a cart specially designed to collect a significant amount of the fluid that comes from the wings. Saving and reusing deicing fluid will save money, and reduce the runoff into streams and waterways.


A prototype of the testing system, shown on a workbench

Honorable Mention (3) – $100
Validation Test System for Boston Scientific IPP
Team Members: McKenzie Hill, Ahmed Al Dulaim, Nathan Halanski, and Katherine Wang, Biomedical Engineering
Advisors: Orhan Soykan and Sangyoon Han, Biomedical Engineering
Sponsor: Boston Scientific
Overview: Performing analyses, simulations, and engineering calculations, the team was able to estimate and predict the movement of IPP cylinders and resulting stress/strain. They designed new test procedures to perform physical testing and fabricated a physical test system.


Team members from left: Brian Parvin, Paul Allen, David Brushaber, Alex Kirchner, Kurtis Alessi

Honorable Mention (4) – $100
Road Marking Reflectivity Evaluator
Team Members: Brian Parvin, Mechanical Engineering; Paul Allen, Electrical Engineering; and David Brushaber, Kurtis Alessi and Alex Kirchner, Computer Engineering
Advisor: Tony Pinar, Electrical and Computer Engineering
Sponsor: SICK, Inc.
Overview: When road stripes wear off, auto accidents increase. To solve this problem, the team developed software that uses reflectivity values obtained using a SICK lidar unit. Their new software identifies deterioration of road stripes and recommends timely repainting, which will also aid in the safety and reliability of self-driving vehicles on roadways. The team constructed a prototype to demonstrate functionality–a pushable cart that evaluates road markings. An intuitive user interface displays the markings being evaluated, and indicates if they meet necessary levels of reflectivity. With their project, the team is taking part in the TiM$10K Challenge, a national innovation and design competition.


20th Anniversary “People’s Choice” Award – $100
Based on receiving the most text-in votes during Design Expo

A CAD drawing of the actuator showing two UGVs connected by the coupling and actuating system

Connector and Coupling Actuator for Mobile Electrical Microgrids
Team Members: Trevor Barrett, Nathan Bondi, and Sam Krusinski, Mechanical Engineering; Travis Moon, Electrical Engineering
Advisor: Cameron Hadden, Mechanical Engineering-Engineering Mechanics
Sponsor: Center for Agile and Interconnected Microgrids
Overview: Imagine how someone living through a natural disaster like Hurricane Katrina or Hurricane Dorian must have felt—scared and helpless, with no way to call for assistance or let loved ones know they were okay. It could be days or weeks before first responders are able to restore power to the area. That is where our project comes in. Our team was tasked to design, prototype, and test a connector and coupling actuator that can establish an electrical connection between two unmanned ground vehicles that will be used to build temporary microgrids in areas that desperately need it.


DESIGN EXPO IMAGE CONTEST
Based on team photos submitted during Design Expo registration

First Place – $200
Formula SAE Enterprise

F-276 Racecar racing by on a speedway with the driver shown in his black helmet.
F-276 Racecar. Photo Credit: Brendan Treanore, 4th year, MSE

Second Place – $100
Flammability Reduction in Magnesium Alloys for Additive Manufacturing

Two orange-yellow flames jet up from a pike of ashes.
Flammability test of a magnesium AZ61 alloy. Photo Credit: Max Urquhart, 3rd year, ECE

Third Place – $50
Velovations Enterprise

Three fat tired bikes are parked in the snow along the Michigan Tech "Tech Trails" groomed trail system, covered in snow, with sunshine and trees in the background.
Velovations Enterprise: Testing dropper posts in the snow Photo Credit: Somer Schrock, 3rd year, ME

DESIGN EXPO INNOVATION AWARDS
Based on application
. Learn more here.

The Husky Innovate logo shows a lightbulb with blue, green and teal dots flowing out in the rough profile of a Husky dog.
Microphoto of master alloy nanoindentation array of Al25Mn, courtesy of MSE 4th year student Ryan Lester
Microphoto of master alloy nanoindentation array of Al25Mn. Credit: Ryan Lester

First Place – $250
Increasing the Young’s Modulus of Cast Aluminum for Stiffness-Limited Applications

Team Members: Joel Komurka, Ryan Lester, Zeke Marchel, and
Wyatt Gratz, Material Science and Engineering
Advisor: Paul Sanders, Materials Science and Engineering
Sponsor: Eck Industries


Benchtop design which simulates physiological conditions in HLHS patients for testing of our stent prototype. (photo taken by Kelsey LeMay)
The team’s benchtop design, which simulates the physiological conditions in HLHS patients used to test infant heart stent prototype.

Second Place – $150
Transcatheter Sign Ventricle Device (BME)

Team Members: David Atkin, Kelsey LeMay, and Gabrielle Lohrenz, Biomedical Engineering
Advisors: Smitha Rao and Jeremy Goldman, Biomedical Engineering
Sponsor: Spectrum Health—Helen DeVos Children’s Hospital


a prototype of the vaccine transporter, which is about the size of a large breadbox, and fits inside a duffel bag.
Second iteration of the IGS team’s vaccine cold transport container for developing countries, which fits neatly inside a duffel bag.

Third Place – $100
Innovative Global Solutions (IGS)

Team Leaders: Nathan Tetzlaff, Mechanical Engineering; Marie Marche, Biomedical Engineering
Advisors: Radheshyam Tewari, ME-EM and Nathan Manser, Geological and Mining Engineering and Sciences
Sponsor: Enterprise Manufacturing Initiative funded by General Motors, Cummins, Milwaukee Tool

2020 ENTERPRISE AWARDS
Based on student, advisor, faculty and staff nominations.

The Michigan Tech Enterprise Program logo, created over a decade ago by a Michigan Tech student, features a yellow lower case "e" in the shape of a swoosh


Student Awards
Outstanding Leadership: Allysa Meinburg, Consumer Product Manufacturing

Rookie Award: Bryce Traver, Alternative Energy Enterprise

Innovative Solutions: Travis Wavrunek, Alternative Energy Enterprise

Industry/Sponsor Relations: Jordan Woldt, Blue Marble Security/Oshkosh Baja Suspension Team

Faculty/Staff/Sponsor Awards
Outstanding Enterprise Advisor: Dr. Tony Rogers, Consumer Product Manufacturing

Outstanding Enterprise Sponsor: Michael Bunge, Libbey Inc.

Behind the Scenes: Steven Lehmann, Biomedical Engineering


THANKS TO ALL!

Now, be sure to check out all the awesome Enterprise and Senior Design team projects at mtu.edu/expo.


Design Expo is Today!

Join today us online at mtu.edu/expo. All are welcome!

The 20th Design Expo starts today (April 16). Watch the Kick-off event live via Zoom and Facebook Live starting at 10 a.m. Register to virtually attend this event before 10 a.m. via Zoom, or tune into the Pavlis Honors College Facebook Page. No registration required to watch via Facebook Live.

Starting at 4 p.m. we will live stream the Awards Presentation via Zoom and Facebook Live.

Register to virtually attend this event before 4 p.m. via Zoom or tune into the Michigan Tech Facebook Page. No registration required to watch via Facebook Live.

Use Text in Voting to vote for your favorite video using the number 919-351-8683. Participants can vote for as many competitors as they like but can only vote once for each competitor. Text in voting will take place from 10 a.m. to 3 p.m. today.

To vote, a participant might text the following case sensitive message to the phone number above: “101” to vote for Blizzard Baja or “201” to vote for Medical Device Ball Bearing Temperature Test Fixture. Team numbers and videos will be available via the Design Expo website, and all who register for Live Webinars.

Get more details in “MTU Design Expo Unveils Student Innovations” on Michigan Tech News.