Tag: MSE

Stories about Materials Science and Engineering.

Excellence in Student Publishing

Global map with readership numbers marked at various locations.

This week, October 17–21, 2022, the Graduate School and the Van Pelt and Opie Library celebrate International Open Access Week. The event is organized by the Scholarly Publishing and Academic Resources Coalition (SPARC).

This year, we’re marking Open Access Week by recognizing the 10 years of master’s theses, doctoral dissertations and master’s reports (ETDRs) that are freely available to the world through Digital Commons @ Michigan Tech, the University’s institutional repository. This collection of works is comprehensive back to 2012, and some are nearly a decade older. With Digital Commons, we’re provided with usage statistics that show activity on the platform and across the web. Throughout the week, we’ll share stories and insights informed by these statistics that speak to how publishing Open Access has benefitted Michigan Tech students. In the meantime, take a moment to check out the collection of ETDRs on Digital Commons @ Michigan Tech.

One great feature of Digital Commons @ Michigan Tech is its shareable readership dashboard. This dashboard displays statistics related to how users are interacting with content on the repository. For example, users have downloaded Michigan Tech master’s theses, master’s reports and dissertations over 1.5 million times from 227 different countries.

Top Ten Visited Submissions

  1. 33,471 hits — “Determination of Bulk Density of Rock Core Using Standard Industry Methods
    Author: Kacy Mackenzey Crawford, Master of Science in Civil Engineering
  2. 18,930 hits — “Modeling, Simulation and Control of Hybrid Electric Vehicle Drive While Minimizing Energy Input Requirements Using Optimized Gear Ratios
    Author: Sanjai Massey, Master of Science in Electrical Engineering
  3. 18,484 hits — “Teaching the Gas Properties and Gas Laws: An Inquiry Unit with Alternative Assessment
    Author: Michael Hammar, Master of Science in Applied Science Education
  4. 17,781 hits — “Twelve Factors Influencing Sustainable Recycling of Municipal Solid Waste in Developing Countries
    Author: Alexis Manda Troschinetz, Master of Science in Environmental Engineering
  5. 14,281 hits — “Parameter Estimation for Transformer Modeling
    Author: Sung Don Cho, Doctor of Philosophy in Electrical Engineering
  6. 12,895 hits — “Aerothermodynamic Cycle Analysis of a Dual-Spool, Separate-Exhaust Turbofan Engine with an Interstage Turbine Burner
    Author: Ka Heng Liew, Doctor of Philosophy in Mechanical Engineering-Engineering Mechanics
  7. 12,597 hits — “Virus Purification, Detection and Removal
    Author: Khrupa Saagar Vijayaragavan, Doctor of Philosophy in Chemical Engineering
  8. 11,089 hits — “Measuring the Elastic Modulus of Polymers Using the Atomic Force Microscope
    Author: Daniel Hoffman, Master of Science in Materials Science and Engineering
  9. 11,050 hits — “Identity and Ritual: The American Consumption of True Crime
    Author: Rebecca Frost, Doctor of Philosophy in Rhetoric, Theory and Culture
  10. 10,561 hits — “Energy Harvesting from Body Motion Using Rotational Micro-Generation
    Author: Edwar. Romero-Ramirez, Doctor of Philosophy in Mechanical Engineering-Engineering Mechanics

To dig deeper into the collection, it consists of 2,611 dissertations, theses and reports with 76% of them available Open Access. The Open Access collection represents each college on campus:

  • College of Engineering: 58%
  • College of Sciences and Arts: 28%
  • College of Forest Resources and Environmental Science: 8%
  • College of Computing: 3%
  • College of Business: 1%
  • School of Technology: 1%

Citations for Student Engineering Works

Matthew Howard’s master’s thesis, “Multi-software modeling technique for field distribution propagation through an optical vertical interconnect assembly,” has been mentioned on Facebook 527 times. “Impact of E20 Fuel on High-Performance, Two-Stroke Engine,” a master’s report by Jon Gregory Loesche, was cited in a 2021 technical report by the National Renewable Energy Laboratory, a national laboratory of the U.S. Department of Energy.

By the Graduate School and the Van Pelt and Opie Library.

SWE Hosts Evening with Industry in 2022

Event room with tables and presentation screen.

On September 20 the Society of Women Engineers (SWE) hosted its annual Evening with Industry (EWI). The event brought together over 115 students and sponsors from 23 companies. The highlight of the evening was keynote speaker Carrie Struss from Milwaukee Tool, who discussed career development and tips from her career journey.

The section would like to thank all who attended and participated in making the evening a success. “EWI has been held for 34 years. Its success is due to the involvement and commitment of the SWE Section and our EWI Committee,” said Gretchen Hein, the section’s advisor.

The EWI Committee comprised four students: Alli Hummel (civil engineering), Natalie Hodge (electrical and computer engineering), and Maci Dostaler and Kathleen Heusser (biomedical engineering).

The SWE section works closely with Career Services to ensure the sponsor registration and support runs smoothly. The section thanks the sponsors for their support and input. They are truly part of the Michigan Tech learning community. These corporate representatives visit with the students during EWI and guide the students through the transition from student to professional. These interactions greatly help students learn how to advocate for themselves and others as they begin their careers.

Many students commented about the benefits of EWI:

  • “I got to know the recruiters before Career Fair and was able to get an interview.”
  • “I talked with Gerdau after EWI and they pulled me aside, went through my resume, and did a mini interview!”
  • “The Textron recruiter I talked to was very excited about me coming to the Textron booth at Career Fair. I’m definitely applying to a company (CWC Textron) I hadn’t considered before today!”
  • “Last year, I stepped into a one-on-one meeting with Stellantis on a whim which led to a successful internship with them, changing my whole career direction!”

SWE has begun planning the 2023 EWI event. If you are interested in learning more about it, please contact us at SWEEWI@mtu.edu.

By Gretchen Hein, Advisor, Society of Women Engineers.

Related

Meet a Six-Time Fellow at Michigan Tech

By working at the interface of theory and experiments, Dr. Yun Hang Hu is building a bright future for energy devices and technology.

Have you ever met a professor bestowed with the distinguished honor of Fellow…six times? At Michigan Tech, that professor is Yun Hang Hu, the Charles and Carroll McArthur Endowed Chair Professor in the Department of Materials Science and Engineering. Dr. Hu is an international leader in energy research for his innovative processing of materials.

He has been named a Fellow six times for the breadth and rigor of his work:

  • Fellow of the American Physical Society – 2020: “For pioneering contributions to the dynamic control of structures and properties for carbon nanomaterials in their chemical synthesis, for the discovery of phase-disorder effects on memristive behaviors of metal sulfides, and for advances in chemical physics of catalysis and photocatalysis.”
  • Fellow of the ASM International – 2020: “For outstanding contributions to research and innovation in energy conversion materials; including application in solar cells, supercapacitors, hydrogen production and hydrogen storage.”
  • Fellow of the American Chemical Society – 2020: “Recognized for pioneering the synthesis and application of shape-controlled 3D graphene, discovering memristive behavior of 2D layer materials, inventing thermal-photo hybrid catalytic processes, designing efficient electrodes for energy devices, and inventing novel hydrogen storage materials.”
  • Fellow of the American Association for the Advancement of Science – 2014: ”For distinguished contributions in the field of novel materials and catalysts, particularly for molecular design and synthesis of nanomaterials for energy conversion, storage, and utilization.”
  • Fellow of the American Institute of Chemical Engineers – 2013: “Recognized for his exceptional, sustained accomplishments in energy, materials, catalysis and novel processes.”
  • Fellow of the Royal Society of Chemistry – 2013: “More than five years in a senior position….efforts have made an impact in any field of the chemical sciences.”
Microscopic view of a material that flakes in thin, angular sheets.
Hu’s research has resulted in the development of promising new memrister materials. Electrical circuits made of molybdenum disulfide nanosheets (pictured above) can potentially store massive amounts of data in a miniscule amount of space on a computer. Memristers could make today’s iPhones as powerful as a supercomputer. Image credit: Yun Hang Hu

Hu innovates the processing of hydrogen production, hydrogen storage materials, greenhouse gas conversion, and energy conversion and storage. 

His groundbreaking work has led to several brand-new materials and processes, innovations will help in a number of applied technologies—from supercapacitors that run elevators to solar cell banks to computer data storage to making hydrogen fuel from water and sunlight.

In particular Hu investigates advanced materials for energy applications—their characterization and synthesis—using both chemical and physical approaches. His research areas include graphene for solar energy, dye-sensitized solar cells, photocatalysis, synthesis of novel solid materials and liquid fuels from CO2, hydrogen storage materials, and heterogeneous catalysis for energy and fuels. 

Hu also conducts research on 3D graphene materials for supercapacitors and solar cells and has developed several processes to synthesize 3D graphene with excellent performance for dye-sensitized solar cells and perovskite solar cells.

In addition to being elected a Fellow thrice in 2020, Hu earned the Distinguished Service Award from the Energy and Fuels Division of the American Chemical Society that same year.

And most recently, in 2022, for his pioneering contributions to hydrogen energy, Hu won the Rudolf Erren Award from the International Association of Hydrogen Energy (IAHE). The award is given for “Leadership in the Thermochemical Area (involvement with heat engines and combustion, thermochemical production, facets of hydrogen transmission, distribution and storage, such as metal hydrides).”

Read More

A Bright Future for Energy

Memristors: Making a New Generation for Digital Memory and Computation

Yun Hang Hu Wins Both Research Award and Bhakta Rath Award

Dr. Larry Sutter Retires from Michigan Tech with a New Focus: Carbon Neutral Concrete by 2035

Lawrence L. Sutter P.E., Assistant Dean of Research and External Relations, College of Engineering, Michigan Tech
Now that he has retired, Dr. Larry Sutter plans to do a lot more consulting, with a strong focus on the development of sustainable concrete.

After 43 years of distinguished service to Michigan Tech as a staff member, former student, professor, and leader, Dr. Larry Sutter, associate dean of research and external relations in the College of Engineering, and professor of materials science and engineering, officially retired from the University as of June 30.

Sutter first came to Michigan Tech in 1979 to work in the former Department of Metallurgical Engineering, operating and maintaining their powerful electron microscopes. He had previously earned an associates degree in electronics at DeVry University in Ohio and had worked for an instrument vendor for three years. Taking advantage of Michigan Tech’s tuition benefit, while working full time, Sutter took a few undergraduate courses, and then a few more–eventually earning a BS in Metallurgical Engineering. He didn’t stop there. Sutter went on to earn an MS in Environmental Engineering, and finally a PhD in Civil Engineering—all at Michigan Tech.

While pursuing his doctoral degree, Sutter joined the faculty in Michigan Tech’s former School of Technology, teaching courses in civil engineering technology and construction management for nearly a decade, becoming a tenured professor. 

In 2007 Sutter became director of the Michigan Tech Transportation Institute (MTTI), which served as a link between Michigan Tech researchers and the Michigan Department of Transportation (MDOT) and other state DOTS, as well as the Federal Highways Association. Under Sutter’s direction MTTI expanded, growing to 25 employees, focused on transportation research, education and training, outreach, product development and technology transfer, with over $3 million in research expenditures.

He also served as director of the US Department of Transportation-sponsored UTC-MiSTI (University Transportation Center for Materials in Sustainable Transportation Infrastructure). Sutter became actively involved with research through the National Cooperative Highway Research Program, sharing his extensive knowledge of concrete making materials. He also contributed through his strong expertise in material characterization measures, which enabled him to accurately assess concrete durability and the deterioration of concrete pavements.

Sutter joined Michigan Tech’s Department of Materials Science and Engineering in 2013 as a full professor. He advised graduate students and taught courses in scanning electron microscopy, and continued research on  concrete-making materials and concrete durability.

Over the years Sutter’s research focus honed in on various recycled and secondary materials for sustainable concrete, including fly ash and blast furnace slag. He is recognized nationally as a leader in development of standard tests and specifications for using these materials in concrete. 

“My professional goal now is to be a contributor to making the cement and concrete industry carbon neutral by 2035. It is a BHAG (Big Hairy Audacious Goal) but I feel strongly it can be done.”

Dr. Larry Sutter

In recent years Sutter earned several major awards. He was named a Fellow of ASTM International, formerly known as American Society for Testing and Materials. ASTM is an international standards organization that develops and publishes voluntary consensus technical standards for a wide range of materials, products, systems, and services.

In naming him a Fellow, ASTM recognized Sutter as “a valuable resource and advocate for the responsible use of sustainable materials in concrete mixtures, and a forward-thinking leader in integrating new and developing technologies into new and existing standards.”

Sutter’s dedication is underscored with a summary of his involvement: he is active on ASTM Committee C01 Cement, as well as C09 Concrete. He serves as vice-chair of committee C09, the second largest committee within ASTM, and serves as chair of subcommittee C09.24 Supplementary Cementitious Materials. Sutter is also chair of subcommittee C01.14 Non-hydraulic Cements, and serves on the executive committees of both C01 and C09.

“There are numerous professional activities I am involved in, to get the cement and concrete industry to carbon neutral,” says Sutter.

Sutter was also named Fellow of the American Concrete Institute, or ACI, in 2019. He currently serves as chair of ACI Committee 321 Durability Code, Vice-Chair of Committee 232 on Fly Ash and Bottom Ash Use in Concrete, and secretary of Committee 201 on Durability. He serves on the ACI Board of Direction. And now, he serves as chair of the board of the newly formed ACI Center of Excellence for Carbon Neutral Concrete (NEU).

Sutter earned the Jean-Claude Roumain Innovation in Concrete Award from ACI’s Strategic Development Council, which recognized his strong leadership in concrete materials education and research. The award committee cited Sutter’s work, which has “resulted in the advancement of knowledge of deicer-induced damage to concrete, utilization of fly ash and alternative cements, and characterization of a concrete air-void system to overall improve the sustainability and durability of concrete.” Sutter also received the Delmar L. Bloem Distinguished Service Award from ACI in 2018. 

In 2022 Sutter received the Champion Award from the American Coal Ash Association, the 8th recipient of the award over the past 10 years.

Larry with his wife Patty and daughter Lena.

Sutter made his mark outside the world of concrete and Michigan Tech, too. After enjoying hockey as a spectator all of his life, at the age of 37, he got the opportunity to get on the ice and enjoy the game as a participant. This happened because he casually commented to his graduate school office mate, John Sandell, now a faculty member in the Department of Chemical Engineering, that he would love to play hockey—but only if he could play goalie. 

“John assured me that if I wanted to play goalie I could play 7 days a week—because no one else wanted to do it!”

Sutter has played hockey ever since, and even founded the Tuesday Night Hockey League, which involves the game (of course) but also a veritable locker room feast that Sutter prepares himself each week for his teammates.

Sutter’s love of hockey is contagious off campus, too. For each of his many ACI meetings, held in different cities across the country, where possible, Sutter manages to organize an ACI hockey game, which involves finding a rink nearby, recruiting 20 of his ACI colleagues, and playing, too. The game is followed by a reception and the event is always done as a fundraiser for the ACI Richard Stehly Scholarship with each game raising well over a thousand dollars to support the scholarship fund.

Tuesday Night Hockey League at Michigan Tech: first the game, then Larry’s homemade feast! (Larry is first on the lower left).

Sutter is a member of the National Academies Transportation Research Board, and the National Concrete Consortium. Both are leading venues for the dissemination of concrete research. He’s also a volunteer at Little Brothers Friends of the Elderly, something he has done for the past 42 years. 

So what are Sutter’s next steps after retirement?  “My plan is to do a lot more consulting now, with a strong focus on the development of sustainable concrete,” he says. “It’s time to give back.”

Making concrete stepping stones with fourth grade students (as a Mother’s Day gift) became an annual outreach event for Larry. “That was always a highlight of the year.”

Dr. Sutter generously answered our questions about himself and his plans for retirement.

Hometown?

I was raised in a small town Western New York called Perrysburg, about 50 miles south of Buffalo. I am #4 of six children, 3 brothers and two sisters

Why did you choose Michigan Tech?

Actually, Michigan Tech chose me. I came here in 1978 to install an x-ray fluorescence spectrometer in the Metallurgical Engineering department and while I was here I learned of a job opening in the electron microscope lab. I was looking for an opportunity to work at a university and continue my education, and I loved the small town environment of Houghton, so I applied for the job. I came to the interview in December of 1978, the record snow year. Professor Al Hendrickson picked me up at the airport with his VW bug and as we drove to town in that little car, with no heat, with snow banks 6 feet high on either side, I knew this was the place for me. Eventually I was hired, moved here in March of 1979, and so it began.

Part of the job you enjoyed most?

There were many highlights. Operating the electron microscopes, especially the electron microprobe, was a “gadgeteers” dream. That was and always will be the most fun and interesting job. But that wasn’t as professor or dean, that was as a research engineer.

Probably the highlight of my professor time was as director of the UTC. I worked with a very competent and resourceful staff person, Beth Hoy, and we did some very innovative things. We were able to fund a large number of students and we had numerous outreach programs to engage K12 students. Somewhere along that timeline we started making concrete stepping stones for a Mother’s Day present with 4th grade students. That was always a highlight of the year. The students would come, learn about microscopes, materials, and then get dirty making concrete.

Most rewarding aspect of your job?

Teaching in the School of Technology was rewarding as it was a two-year associates degree and I saw a lot of students that reminded me of myself at their age. The associates degree is a path into higher education that allows students to take an incremental step and prove to themselves that they can be successful. I saw so many students come in year one with the attitude that 6 months from now they will be a failure, only to find they like learning, and they can be successful in college, and by the end of year 2 they are looking at BS programs, or going to work with an associates degree and a much different career trajectory than would have been the case without the degree. I saw a lot of young people’s lives change for the better.

“If there is spare time, my first choice is to travel. I have a life goal of seeing every NHL team on their home ice at least once.” (Hopefully that includes at least a few destinations with beautiful beaches!)

Who were some of the people that influenced or helped you along the way?

In my time in the Metallurgical Engineering department as research engineer, the two influences were Professor Don Mikkola and Professor Duane Thayer. Don was the main reason I came to MTU. At one point I turned down the job offer and he called and talked me into coming; Don had a very convincing manner. Over the years he was always a supporter and a mentor, and a close personal friend. Duane Thayer was a major influence on my education and on my ultimate career path, and also a close personal friend. I became interested in the local copper history when I first came to Michigan Tech, and Duane, aka ‘Dewey’, filled in a lot of stories. I became interested in mineral processing/extractive metallurgy and that became my academic pursuit, under his tutelage. And for everyone reading this who was one of ‘Dewey’s Boys’ (and there were girls too), we all know we are in a special fraternity. Knowledge from that training is still serving me today as I work in the cement and concrete industry.

Plus, Dewey told me early on the secret of being a Yooper:  “Be the same way every day. Whatever you are, just be that way and don’t be changing on us.” 

Another major influence of mine came from another Dewey, Civil Engineering Professor George Dewey. He got me engaged in fly ash and concrete. Had he not supported me in my transition from research engineer to graduate student to faculty member, it never would have happened. He introduced me to ACI (the American Concrete Institute) and taught me much about how the construction industry works. His support early in my career was foundational. And more than anyone, he taught me how to write.

Last but not least, I worked with two professional staff, that without their skills, much of the research I led would not have had anywhere near the same level of impact. Those were Dr. Karl Peterson, who is now a professor at the University of Toronto, and Jerry Anzalone, now a successful entrepreneur and beachcomber in central California. Both were graduate students under my supervision at the time, but I received far more from them than I gave. Their laboratory skills and their work with students on the front lines made our research program successful.

Your biggest goal now?

My professional goal now is to be a contributor to making the cement and concrete industry carbon neutral by 2035. It is a BHAG (Big Hairy Audacious Goal) but I feel strongly it can be done.

What will you do in your spare time? 

I don’t see a lot of spare time coming up in the near term. There are numerous professional activities I am involved in, to get the cement and concrete industry to carbon neutral. Plus I have leadership roles in ASTM and also in ACI, most notably as Chair of the Board for the new ACI Center of Excellence for Carbon Neutral Concrete (NEU). But if there is spare time, my first choice is to travel. I also have a life goal of seeing every NHL team on their home ice at least once. So far I have 16 of the 32 teams done. I’ve been to multiple arenas for some teams, like Detroit. I try to see a couple of teams each year. 

Larry as goalie.

What advice do you give to new students? New faculty?

My advice for new students: Put your phones away, listen to your professors, and read the book. And most importantly, ask questions. It will make them a better professor and it will help you understand that not every question has an answer, and for a young engineer that’s job security.

“With intelligent questions, not nonsense, drive your professor to the point where they say ‘I don’t know.'”

Larry Sutter

My advice for new faculty: Nothing is easy but everything is possible. Don’t take “No” for an answer and never forget the importance of the professional staff at the university. They are the cog that makes the machine work. Respect them and make them part of your team.

The College of Engineering and Michigan Tech are thankful for Dr Sutter’s leadership and friendship and wish him every happiness in his retirement!

Reimagining the Possible! Happy Engineer’s Week 2022!

Reimagine what seems impossible –  to become the Possible! It’s National Engineers Week Feb 20-26.

This week, we’re celebrating National Engineers Week (Feb. 20-26). Everyone’s invited to special events on campus sponsored by Tau Beta Pi, the Engineering Honor Society student chapter at Michigan Tech.

Founded by the National Society of Professional Engineers in 1951, Eweek is celebrated each February around the time of George Washington’s birthday (February 22) because Washington is considered by many to be the first US engineer. Engineers create new possibilities all the time. From green buildings to fuel-efficient cars to life-saving vaccines, engineers work together to develop new technologies, products and opportunities that change how we live for the better.

At Michigan Tech, the week is organized by Tau Beta Pi, and celebrated with special events on campus, many hosted by student organizations. Everyone is welcome! Please feel free to stop by and check out Eweek events as your schedule allows:

Monday, Feb. 21

5pm to 6pm
Tau Beta Pi Alumni Panel
Contact Jacob Stewart, Tau Beta Pi, for details (jacstewa@mtu.edu).

Dr. Zhanping You shares his methods and results on building new roads from recycled waste tires and old pavement rubble!

6 pm to 7 pm
Where the Rubber Meets the Road
Husky Bites Zoom Webinar
Join Professor Zhanping You and PhD student Kobe Jin to learn how old tires + pavement rubble are becoming new recycled, better roads!

Tuesday, Feb. 22

3:30pm to 5:30pm
Egg Drop Design Challenge
Makerspace in the MUB Basement
Some may remember this activity from past years. Experts and novices alike are welcome to give it a try. Mind Trekkers adds their own twist!

Are you up for the (egg drop) challenge?

Wednesday, Feb. 23

11am to 2pm
Eweek Cake
112 Dillman
Delicious cake from Roy’s Bakery, hosted by the Department of Engineering Fundamentals, it’s a longtime Eweek tradition at Michigan Tech!

Come grab your piece of cake!

5pm to 6pm
Spaghetti Towers
Fisher 129
Test your engineering skills with SSC and Built World Enterprise: Who can build the tallest spaghetti and marshmallow skyscraper?!?

Thursday, Feb. 26

2pm to 4pm
Metal Foundry in a Box

M&M room U109
Never been in a foundry before? The students at Materials United will help you feel right at home. Make something small. Let it cool, then come pick it up later.

Not an MSE, but still want try your hand at making something in the foundry at Michigan Tech? Here’s your chance!

Friday, Feb. 25

4 pm to 7 pm
Escape Room
MUB Ballroom A2
Join Mind Trekkers for an engineering Escape Room that is truly above and beyond!

Tau Beta Pi Inducts 15 New Members at Michigan Tech

Congratulations to our Fall 2021 Tau Beta Pi Initiates! (Not pictured here: Andrew Scott and Dr. Mary Raber)

The College of Engineering recently inducted 14 students and one eminent engineer into the Michigan Tech chapter of Tau Beta Pi.

Tau Beta Pi is a nationally recognized engineering honor society and is the only one that recognizes all engineering professions. Students who join are the top 1/8th of their junior class, top 1/5th of their senior class, or the top 1/5th of graduate students who have completed 50% of their coursework. The society celebrates those who have distinguished scholarship and exemplary character, and members strive to maintain integrity and excellence in engineering.

Fall 2021 Initiates

Undergraduate Students: Dom Bianchi, Mechanical Engineering; Sean Bonner, Civil Engineering; Sam Breuer, Computer & Electrical Engineering; Sophia Brylinski, Materials Science & Engineering; Spencer Crawford, Computer Engineering; Jacqui Foreman, Chemical Engineering; Stephen Gillman, Computer Engineering; Michael Kilmer, Materials Science & Engineering; Emerald Mehler, Chemical Engineering; Ben Stier, Computer Engineering; Alex Stockman, Computer Engineering; and Jordan Zais, Biomedical Engineering

Graduate Students: Tonie Johnson, MS, Biomedical Engineering; and Andrew Scott, MS Electrical & Computer Engineering

Eminent Engineer

Mary Raber is Chair of Michigan Tech’s Department of Engineering Fundamentals

Dr. Mary Raber

Alumni Gift of Advanced 3D Metal Printer Now Up and Running at Michigan Tech

One of the first test prints on Michigan Tech’s new 3D metal printer: intricate little fish.

A gift from Alumni, Michigan Tech’s highly-advanced 3D metal printer—a 3D Systems ProX350—arrived last March. It’s now up and running, able to process 11 unique metals, including bio-grade titanium (for biomedical applications), cobalt and chromium, several types of stainless steel, and more. With a resolution of 5 microns, this new large printer is state-of-the-art. 

Obtaining the new 3D printer was made possible by the generosity of Michigan Tech alumni. ME-EM Department Chair Bill Predebon received a 20 percent discount on the $875K system from Scarlett Inc. The owner of Scarlett Inc, Jim Scarlett, is a mechanical engineering alumnus. 

In addition to Scarlett, several other alumni donors pitched in. One anonymous donor provided over $600K , and five others have made up the difference to meet the full cost of $673K. Those five are: Ron Starr, John Drake, Frank Agusti, Todd Fernstrum, and Victor Swanson.

ME-EM department chair Bill Predebon and mechanical engineering alum Jim Scarlett

“Very few universities have a 3D metal printer of this quality and versatility,” says Predebon. “It is one of the most accurate metal 3D printers available. With approximately a 1-ft. cube size billet, which is an impressive size billet, you can make a full-size or scaled-down version of just about anything,” says Predebon.

“We can use our own metal powders, as well,” adds Predebon. “That’s a huge plus. Michigan Tech researchers, particularly those focused on materials development, can use the printer to deposit experimental metal compositions to produce unique metal alloys customized specifically for the 3D printing process.”

Faculty and graduate students at Michigan Tech will have access to the 3D metal printer for research projects. Undergraduate students working on senior design projects and student-run Enterprise teams will, too.

The process is direct metal printing, or DMP, and it’s a type of additive manufacturing, Predebon explains. “You start with metal powders, and from those you create the final metal part. You’re adding a material—in this case, metal—bit by bit. Traditional manufacturing is all about subtracting: taking metal away to make a part. This is the inverse, and it’s a game changer. You can do so much more this way.”

“For many industries—including medical, automotive and aerospace—3D metal printing is a game changer. Here on campus it will be a game changer for Michigan Tech faculty and students, too.” 

William Predebon, Chair, Mechanical Engineering-Engineering Mechanics

Very few universities yet have a system with this sophistication and quality, notes Predebon. 

The benefit for Michigan Tech students, Predebon says, is competitive advantage. “When our students interview for a job, they will be able to communicate how they’ve been able to produce parts in a way very similar to what industry is doing. Some companies have metal 3D printers worth millions of dollars. In industry, engineers can use one of those to print out an entire engine block,” he says. “When Michigan Tech graduates see one on out in industry, the 3D metal printer might be larger, but they will already be familiar with the type of system.”

According to Materials Science and Engineering Professor Steve Kampe, development of additive manufacturing of metals represents a huge opportunity that will be prominent in manufacturing for generations to come. “It is a transformative technology in engineering,” says Kampe. “Using 3D printing to create metallic components poses huge challenges; but the potential benefits are enormous.”

“Metal additive manufacturing along with polymer additive processes are industry 4.0 topics included in Michigan Tech’s online graduate certificate in Manufacturing Engineering,” adds Professor John Irwin, chair of the Department of Manufacturing and Mechanical Engineering Technology. “It is very fortunate for us to have this metal 3D printer here on campus. We’ll use it to demonstrate additive manufacturing design principles and view product purpose: form, fit, and function. 

Michigan Tech’s new metal 3D printer is located on campus in the Minerals and Materials Engineering (M&M) Building. The location in Room 117, is near several other 3D polymer printers. For more information on using the new printer, contact MSE Research Engineer Russ Stein.

Take A Virtual Tour of Our 3D Metal Printer

https://www.mtu.edu/unscripted/2021/10/be-brief-metal.html

Then There Were Three: Stratus Nanosatellite Launch for MTU’s Aerospace Enterprise

Michigan Tech’s students designed Auris. It has been selected for launch by the University Nanosatellite Program, sponsored by AFRL.

The Aerospace Enterprise, under the direction of Dr. Brad King, is launching satellites as well as student careers. At the University Nanosatellite Program, sponsored by the Air Force Research Lab (AFRL) in August, ten students from the Enterprise team presented their latest satellite application, Auris, to judges from several space-related agencies.

The challenge for the competition was to develop a satellite mission that is relevant to both industry and the military. Students conceived of the idea for Auris, a ‘listening satellite,’ through discussions with Enterprise alumni working in industry and their interest in monitoring communication from other satellites to estimate bandwidth utilization.

Dr. L. Brad King, Richard and Elizabeth Henes Endowed Professor (Space Systems), Mechanical Engineering-Engineering Mechanics

“Ten university teams were in attendance and of the teams, we were among three of the schools to be selected to move forward. We now move on to ‘Phase B’ of the program and have a guaranteed launch opportunity with substantial funding to complete the design and integration of our spacecraft,” says Matthew Sietsema, Chief Engineer for the Aerospace Enterprise.

As a result of this award, the Aerospace Enterprise will soon have three satellites in space. Stratus, a climate monitoring satellite that determines cloud height and cloud top winds, was set for a March 2021 launch date. However, it was delayed due to the pandemic and is planned for launch in 2022. Oculus, an imaging target for ground-based cameras for the Department of Defense, was launched in June 2019.

“The Enterprise has remained on the same trajectory and has been very successful by all measures,” remarks King. “Students do a great job managing themselves and the leadership to replace themselves as they graduate and new members move up. It’s a challenge to juggle more than one satellite, but our students have remained focused and hard working while managing several projects and it’s a testament to their tenacity.”

Creating real-world, hands-on learning opportunities for around 100 students per semester, the Enterprise serves as a stepping stone for many as they launch their careers.

“Our students, even if they aren’t in leadership roles, do well securing positions in the aerospace industry. We tend to perform well because we offer a three-year, long-term program, which allows our students to maintain the situational knowledge required to solve complex problems.”

—Dr. Brad King

Paul Sanders: Tiny House Design—Weather, Watts, and Materials

This green, sustainable, net zero Tiny House was designed and built by Michigan Tech students. It sits on a foundation near the shores of Lake Superior. And it’s comfortable and enjoyable year-round, even during a harsh winter.

Paul Sanders shares his knowledge on Husky Bites, a free, interactive webinar this Monday, October 18 at 6 pm ET. Learn something new in just 20 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 10/18 at 6 ET? Grab a bite with Dean Janet Callahan and Paul Sanders, Professor of Materials Science and Engineering at Michigan Tech. 

Prof. Paul Sanders holds the Patrick Horvath Endowed Professorship of Materials Science and Engineering at Michigan Tech. He’s also an alum—he earned his BS in Metallurgy and Materials Engineering in 1991.

Tiny houses are springing up all over the US. But in the Upper Peninsula of Michigan, where Michigan Tech is located, total snowfall can exceed 200 inches during the winter. Designing a tiny house for Michigan’s UP involves several extra layers of complexity. Especially if you want that tiny house to be carbon-neutral.

Last spring, a group of students in the Green Campus Enterprise at Michigan Tech took on the challenge: design and build a sustainable and affordable tiny house for cold climates—one that would serve as a model for green, energy-efficient (tiny) housing.

Michigan Tech’s Green Campus Enterprise was created in 2008, part of the Higher Learning Commission’s Academic Quality Improvement Program (AQIP) project. Under the AQIP project, Green Campus is charged with estimating the University’s carbon footprint and suggesting ways to reduce it. The team is advised by Chris Wojick, senior researcher at Michigan Tech’s Great Lakes Research Center, and Rob Handler, operations manager/senior research engineer at Michigan Tech’s Sustainable Futures Institute. Students taking part in Green Campus Enterprise annually measures the carbon footprint of Michigan Tech, and also design and implement projects to improve sustainability.

The Green Campus team began by working with their client, Sanders, to design the Tiny House with his family’s checklist and the team’s sustainable goals in mind. They researched and developed innovative solutions for making common building practices more sustainable. Next, the team modeled the thermal and energy performance of their preliminary tiny house designs. Once the best option was modeled, they worked directly with Sanders to create construction drawings and bring the house from idea to reality. 

Michigan Tech alumna Sierra Braun ’21 works as as an architectural drafter for S.C. Swiderski, LLC in Mosinee, Wisconsin, while pursuing an MS in Architecture. While on campus, she led the Green Campus Enterprise.

The team constructed sections of the tiny house on campus. Then Sanders, along with a lot of help from his son Caleb, assembled the home on their property in Bete Gris, Michigan, on Lake Superior. The result: a very sustainable (and cute and cozy) tiny house, which will hopefully be sided before the Keweenaw winter!

During Husky Bites we’ll meet the team, see the house, and find out just how they did it. Joining in will be Michigan Tech’s Tiny House team leader Sierra Braun, who graduated from Michigan Tech in May 2021 with a BS in Civil Engineering. While on campus, she led Green Campus Enterprise. Dave Bach, the team’s consultant and mentor to Sierra, will be at the session, too. Bach is an expert on sustainable building design and a Michigan Tech alum. Last but not least, environmental engineering undergraduate Nick Kampfschulte will be at the session, too, to tell us about the tiny house thermal modeling/sensing system he helped design.

Sanders, a six-sigma black belt engineer during his employment with Ford Motor Company, has led Michigan Tech’s highly successful MSE senior design program since 2010. Sanders has been successful in securing industry sponsorship for 100 percent of all MSE senior design projects since 2011. This time, however, he decided to sponsor and fund a student project of his own: A two-story tiny house. Instead of seeking out a senior design team for the Tiny House project, however, he sought help from Michigan Tech’s Green Campus Enterprise. Sanders knows a thing or two about Michigan Tech’s award-winning Enterprise Program. He previously served as an advisor to another Enterprise team, the Advanced Metalworks Enterprise.

Enterprise is a program unique to Michigan Tech, open to students of any major. Teams operate like companies, serving clients in a business-like setting to create products, deliver services, and pioneer solutions. There are currently 24 Enterprise teams on campus. Students in Green Campus Enterprise design and implement projects to improve the sustainability of the Michigan Tech campus, and measure its carbon footprint each year. The team was started in

A great view from the Tiny House!
Green Campus Enterprise artist rendering of the Tiny House, with a footprint of 200 square feet, it follows passive house principles. It’s also a net-zero energy building. Credit: Sierra Braun

Prof. Sanders, how did you first get into engineering? What sparked your interest?

As a kid I liked to build structures (play houses, cars) out of wood. I also liked chemistry, math, and physics in school.

Hometown, family? 

I grew up in Pulaski, Wisconsin as the oldest of three. My father was a high school chemistry teacher, and my mother was an elementary school teacher.

Sections of the Tiny House were built on campus, then transported to Bete Gris.

What do you like to do in your spare time?

I enjoy building and remodeling. I also enjoy meeting new people and living (not traveling) in different places around the world.

Did you know?

Dr. Sanders is one of Michigan Tech’s most prolific and creative researchers. Check out the website of his research lab, Alloy Research Central, at http://alloyresearch.mtu.edu.

Sierra, how did you first get into engineering? What sparked your interest?

I’ve always enjoyed thinking through problems, and designing and building things as a kid. Growing up, my family did some fun construction projects, too, from building dog houses and bookshelves to a cabin and a treehouse.

Hometown, family? 

I’m from Stratford, Wisconsin, currently living with my boyfriend and our two cats.

Nick Kampfschulte—and PeeWee

Nick, how are you involved with the Tiny House project?

My role was to aid in the overall design and modular construction. I also worked on designing and implementing its thermal modeling/sensing system.

Hometown?

I grew up in Grand Rapids, Michigan.

What do you do in your spare time?

I repair, build, and restore automobiles. I’m also into metal fabrication.

Dave, how are you involved with the Tiny House project?

Dave Bach is an alum, too. He earned both his BS in Mechanical Engineering and an MS in Biological Science at Michigan Tech.

I served as the team’s design and building advisor and mentor. I’ve been a professional sustainable builder and designer for the past 42 years. 

A dozen years ago, as a construction management instructor at Michigan Tech, Bach worked with Michigan Tech students on a design project to re-use two semi-trailer bodies and convert them to a single-family home.

What do you like to do in your spare time?

I’ve lived in the Copper Country since 1979, and in Houghton since 1999. I participate in all outdoor silent sports, especially mountain biking and cross-country skiing.

Graduate School Announces Fall 2021 Finishing Fellowship Award Recipients

Campus vista in hazy light showing the canal bending.

The Graduate School proudly announces the recipients of its Fall 2021 Finishing Fellowships. Congratulations to all nominees and recipients.

Finishing fellowship recipients in engineering graduate programs are: