Category: Education

Dean’s Teaching Showcase: Christopher Middlebrook

Christopher Middlebrook
Christopher Middlebrook

College of Engineering Dean Janet Callahan has selected Christopher Middlebrook, professor in the Department of Electrical and Computer Engineering (ECE), as our ninth Dean’s Teaching Showcase member of spring 2022.

Middlebrook will be recognized at an end-of-term event with other showcase members, and is also a candidate for the CTL Instructional Award Series.

Middlebrook was selected for growing his work with printed circuit board (PCB) design into something extraordinary. He recognized a training need for electronic design engineers and put all the pieces in place to address a national security problem and offer employment opportunities for Michigan Tech students.

Like most great things, it started small. Middlebrook had an idea that if students like building electronic circuits, they might enjoy designing the printed circuit boards as well. His involvement with the Institute for Printed Circuits (IPC), a trade association founded to standardize assembly and production of electronic equipment, led to an IPC student chapter being formed in ECE. He gathered free materials and used equipment from local and national suppliers and launched an undergraduate course in PCB design. It was a huge hit. Local PCB manufacturer Calumet Electronics Corporation worked closely with him to offer the students an in-depth view of the design process from schematic capture to tested and accepted final product. Calumet Electronics Director of Engineering Services Rob Cooke describes Middlebrook as a “key strategic partner.” Cooke says: “Chris continually pushes to get feedback from our company about what students need to learn to be successful. He believes, as do we, that being able to see, touch and work with materials and processes is a key to being able to design and build.”

The industry connection did not stop there. Plexus Corporation, a dominant force in the electronics manufacturing industry, has a strong interest in the strength of the electronic system design education. Christina Jufliak, Michigan Tech alumna and a manager at Plexus, learned of Middlebrook’s efforts through the department’s External Advisory Committee. She saw a benefit to both her employer and the University. In her words: “As a Michigan Tech student, I saw firsthand the school’s efforts to provide relevant and hands-on experiences for students to prepare them for their careers.”

Middlebrook worked with Jufliak, the Michigan Tech Office of Advancement and the Plexus Corporation Charitable Foundation to secure $150,000 to create the Plexus Innovation Center on the sixth floor of the Electrical Energy Resources Center (EERC). Jufliak summarizes: “I am very excited that the Plexus Innovation Lab will continue supporting these efforts, preparing students to take on internships and full-time positions within their respective fields.”

This professional-grade makerspace has become a lighthouse for the design, fabrication and testing of electronic systems for researchers, Senior Design and Enterprise projects across the campus. Dean Callahan comments: “Middlebrook’s educational leadership has made a difference to what students are able to design and build, right here in the EERC.”

Caryn Heldt: The Making of a Vaccine

Caryn Heldt shares her knowledge on Husky Bites, a free, interactive Zoom webinar this Monday, March 14 at 6 pm ET. Learn something new in just 30 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites

“Our goal is to bring biotherapies to market faster,” says Dr. Caryn Heldt.

What are you doing for supper this Monday night 3/14 at 6 ET? Grab a bite with Dean Janet Callahan and Chemical Engineering Professor Caryn Heldt, to learn how different vaccines are made. Heldt, the James and Lorna Mack Endowed Chair of Cellular and Molecular Bioengineering, will talk about the different types of vaccines, how they are created and designed, and the FDA approval process. 

Caryn Heldt

Joining in will be one of Dr. Heldt’s former students, Dylan Turpeinen, who worked as an undergraduate and graduate researcher in the Heldt Bioseparations Lab at Michigan Tech. Dr. Turpeinen earned his BS in 2016, and his PhD in 2020, both in Chemical Engineering at Michigan Tech. He’s now a downstream process development scientist at the Florida-based biopharmaceutical company Resilience (formerly Ology Bioservices). In his role, Dr. Turpeinen operates and optimizes purification unit operations to produce vaccines.

Heldt is an alumna, as well. She graduated from Michigan Tech in 2001 with a Bachelor’s degree in Chemical Engineering and Chemistry. She earned a Masters in Chemical Engineering in 2005 and her PhD in Chemical Engineering in 2008, both from North Carolina State University. After post-doctoral studies in chemical engineering at Rensselaer Polytechnic Institute in 2010, she joined the chemical engineering faculty at Michigan Tech. Then, in 2015, Heldt won a prestigious NSF CAREER Award, which boosted her efforts and focus on vaccine research and development. She’s a member of the American Chemical Society, the American Institute of Chemical Engineers, the Society of Biological Engineers, and the Biophysical Society.

Pictured: the ultrastructural details of an influenza virus particle, or “virion”. Dr. Heldt is PI on a joint research project with Johns Hopkins University, funded by the FDA, “Integrated and Continuous Manufacturing of an Influenza Vaccine.”

Heldt teaches both undergraduate and graduate classes at Michigan Tech. Her lab, the Heldt Bioseparations Lab, is busier than ever, with seven graduate and five undergraduate students and two postdocs⁠—her vaccine research dream team. “Our lab focuses on the science of viral surface interactions and applies it to vaccine manufacturing and purification,” she explains. “We are interested in how viruses interact with different surfaces and chemistries. This could be important in how viruses infect cells, but we focus on how we can change surfaces to improve purification and manufacturing of viral therapies.”

Dylan Turpeinen

Turpeinen started out in the lab with Dr. Heldt as undergraduate researcher, fabricating and testing graphene-based electrochemical biosensors for rapid protein detection. He shared his enthusiasm for biosensors with middle and high school students the summer after he graduated with his BS, teaching at Michigan Tech’s Summer Youth Program (SYP) and then started work on his master’s degree, conducting graduate research on biosensors to detect malaria.

We are interested in how viruses interact with different surfaces and chemistries.

Turpeinen’s research then shifted to developing and testing a gold nanoparticle aggregation assay for virus detection, which could be used to ensure surface cleanliness on cruise ships, at hospitals or doctor’s offices between patients. His doctoral dissertation was entitled, “Development of Detection and Purification Strategies for Viral Products,” successfully defended (virtually due to the Pandemic) in July 2020.

Observing these chemical reactions in a test tube sometimes reminded him of a sunset: “The gold nanoparticles are the sun that start above the lake displaying a red-ish pink color and as the sun begins to set behind the lake, the color changes to a deep purple. When the sun is set, only the crisp blue color of Lake Superior is left behind.”

“Integrating graduate and undergraduate training in the lab inspires and guides the next generation of engineers. It also enhances our research.”

Caryn Heldt
A day in the life in the Heldt Bioseparations Lab

Dr. Heldt, how did you first get into engineering? What sparked your interest?

Ever since grade school, I planned on being an engineer. At first, I wanted to work at mission control at NASA. Later, I wanted to make a difference in people’s lives. My mom and sister are nurses, and while I didn’t want to be a medical doctor, making medicines really intrigued me. Now as an engineer I can still make a difference without working directly with patients. 

“A few years ago my son had the Grand Champion chicken in the Houghton county Fair!”
Looking good!
Dr. Heldt is a quilter!

Hometown, family?

I grew up in Pinconning, Michigan. My dad dropped out of school in 8th grade to help on the family farm and my mom has an associate’s degree in nursing. They instilled in me the importance of education and pushed me to get a bachelor’s degree. They were a little surprised when I took it so far as to get a doctorate degree. 

What do you like to do in your spare time?

I live in Atlantic Mine with my husband Gary and our three children. At home we have about 25 chickens (give or take a few) that give us fresh eggs. I enjoy quilting in my spare time. I’ve even started quilting viruses and microscopes, so my love for science is bleeding over into my hobbies. As a family, we downhill ski, snowshoe, and camp. I’ve also served on the Michigan Tech Preschool board, and was a FIRST Lego League coach, too.

“Gold nanoparticle size increase reminds me of a sunset over Lake Superior.”

Dylan Turpeinen, spoken as a chemical engineering PhD student at Michigan Tech

Dr. Turpeinen, how did you first get into engineering? What sparked your interest?

As a kid, I was always using Lego blocks to build anything I could imagine—houses, planes, and spaceships. When I got older, I found myself thinking about how and why something worked. I knew I needed to learn techniques to figure out how. When I visited Michigan Tech in high school, the professors I talked to made me very excited about Chemical Engineering.They explained how it was the “jack of all trades” of engineering. I knew pursuing an engineering degree would teach me the techniques I needed in order to figure out most things at a base level. To this day I deep-dive into any project I am interested in to understand how it works.

Ellie and Momo: they get along great!

Hometown, family?

I was born in Orlando but grew up in Houghton where I stayed for almost 15 years. I currently live in sunny Gainesville, Florida with my wife LiLu Funkenbusch and our two fur babies, Ellie (dog) and Momo (cat).

Any hobbies?

I like woodworking, PC gaming, and visiting local breweries to enjoy any and all IPAs (aka India Pale Ales). I also enjoy making various improvements to our new house.

Watch

Play How Vaccine Manufacturing is a Bit Like Making Salad Dressing video
Preview image for How Vaccine Manufacturing is a Bit Like Making Salad Dressing video

How Vaccine Manufacturing is a Bit Like Making Salad Dressing

Read More

Bouncing, Sticking, Exploding Viruses: Understanding the Surface Chemistry of SARS-CoV-2

The Pandemic Toolbox: COVID-19’s Wrench Remade Research Labs

Students Study Nanotech, Viruses Across Oceans and Disciplines in Singapore

Chemical Engineering Major Wins Portage Health Foundation Scholarship

Q&A with Bhakta Rath Award Winners Pratik Umesh Joshi and Caryn Heldt

TECH SCEnE Offers the Best of Both Worlds in Michigan’s Upper Peninsula

Keweenaw Bay Indian Community tribal members share their knowledge, wisdom, and culture with TECH SCEnE REU students. Apply for TECHSCEnE Summer 2022 by March 15 at https://www.techscene.mtu.edu. Tentative program dates are June 3, 2022- July 29, 2022. Tribal college, community college or university students, women and students from underrepresented backgrounds are all encouraged to apply.

What are you doing this Summer 2022? Want to combine cutting-edge engineering research with direct community involvement and impact? With a generous stipend, travel allowance, plus all expenses paid for 8 weeks?

Samantha Haynes, future biomedical engineer, spent 8 weeks as a TECH SCEnE REU researcher last summer.

Biomedical engineering student Samantha Haynes decided to immerse herself in something entirely new via TECH SCEnE, a National Science Foundation Undergraduate Research Experience (REU) at Michigan Technological University. Haynes came all the way from Arlington, Virginia, where she studies biomedical engineering at Virginia Tech.

The 8-week, all-expense paid program offered at Michigan Tech is called TECH SCEnE (short for Technology, Science and Community Engagement in Engineering). Haynes stayed on campus, went on outdoor trips throughout the Keweenaw Peninsula, guided by the Keweenaw Bay Indian Community, and conducted hands-on research in campus labs alongside a faculty mentor.

TECH SCEnE research projects include water quality testing for heavy metal contamination, smart adhesives for underwater applications, remote monitoring and mobile robots, simulating daylight for hatcheries, and in vitro modeling of the impact of heavy metals.

Samantha is seventh from the left. TECH SCEnE stands for Technology, Science and Community Engagement in Engineering

In addition to hands-on laboratory experience, Haynes and her fellow students took plenty of field visits to the beautiful lakeshores of Lake Superior and Keweenaw Bay. Application deadline for Summer 2022 is March 15. Tentative program dates are June 3, 2022- July 29, 2022.

This year is forecast to be outstanding for viewing the Northern Lights in the Upper Peninsula of Michigan. Located just 20 minutes or so from the Michigan Tech campus, McLain State Park on Lake Superior is a great potential viewing spot!

Haynes pioneered research on heavy metal contamination in the soil and wild rice beds around the Keweenaw last summer as an undergraduate researcher taking part in TECH SCEnE. She also worked alongside members of the Keweenaw Bay Indian Community (KBIC), her fellow REU students, and other volunteers to plant over 75 trees, build hoops houses, harvest foods, and upkeep a large community garden, the tribe’s People’s Garden.

Wild rice, known as manoomin, the good berry, is both a spiritual and nutritional staple of the Keweenaw Indian Community.

Samantha, what did you like most about TECH SCEnE?

I applied to TECHScENE REU because I thought the internship was very unique. I was excited to have the opportunity to work in Michigan and learn about the local Indian community. I personally value diversity and learning about different communities very much, so I appreciated that this type of internship existed. I’m also passionate about creating positive social change, helping to protect the environment, and using science to bridge gaps in education and educate the public on pressing issues.

What was the best part?

Samantha and fellow volunteers tending to plants in one of the many Hoop Houses of the Keweenaw Bay Indian Community People’s Garden

Out of all the experiences activities we did throughout TECH ScENE, building relationships with my fellow peers, mentors, and the Native American community was my favorite part.

What was the most challenging aspect?

The unlearning process of everything I thought I knew about Native Americans. We participated in weekly workshops to unlearn false, preconceived ideas and to learn factual information about Native American tribes and tribal members, especially those we were working with as part of TECH SCEnE. 

“Boozhoo! Welcome to our wellness trail,” says this sign, located on Keweenaw Bay Indian Community tribal land. Take a moment to learn a few words of the Ojibwe language. “Miikaans means “trail”. “Aki” means Earth. And “boozhoo!” means “greetings!” or “hello!”

What next? What are your future plans?

Currently I am a junior in biomedical engineering, so the next step is to secure another internship for summer 2022, in order to gain more experience. Once I graduate, I plan to start working and possibly consider graduate school after a year or two.

Samantha’s final presentation, with her TECH SCEnE research mentor, Professor Rupali Datta

Are you an adventurous college student? Want to learn how to use science and technology to benefit both the community and the environment? Apply to TECH SCEnE by March 15. Tribal college, community college or university students, women and students from underrepresented backgrounds are all encouraged to apply. Learn more and apply for free at techscene.mtu.edu.

Students, Faculty and Staff: Sign Up for LEED Green Associate Training at Michigan Tech

Better buildings equal better lives. This is Discover Elementary in Arlington, Virginia. LEED Zero Energy. Photo by Alan Karchmer

LEED (Leadership in Energy and Environmental Design) is the most widely used green building rating system in the world. Available for virtually all building types, LEED provides a framework to design, construct and operate healthy, highly efficient, cost-saving, green buildings.

Michigan Tech’s Joe Azzarello is one of the founders of the US Green Building Council and has led LEED training workshops throughout the United States, Mexico, South America, China, Thailand, Hong Kong, Singapore and Vietnam. Photo courtesy of Kohler Co.

Are you a student, faculty member or staff at Michigan Tech? If so, you are invited to prepare for, and when ready, take the LEED Green Associate exam. The prep will take place during two sessions, at a low cost, right here at Michigan Tech, with expert training from an original founding member of the US Green Building Council—Michigan Tech alumnus Joe Azzarello.

The LEED exam prep training at MTU will take place over two days. Azzarello will teach on campus in two 5-hour sessions, from 12-5 pm on both Sunday, March 20 and Sunday, March 27. The room is ChemSci 211. Those who cannot attend in person can attend via Zoom. LEED exam training costs $80.00, which includes notes and printed materials. Attendees are expected to purchase their text book, which varies in cost from $73.00 to $115.00, depending on e-book or vendor.

“Attendees will be well trained in what to study for the exam to become accredited as a LEED Green Associate,” notes Azzarello. “Then they must register, take, and pass the LEED GA exam from the USGBC at a later date in order to receive accreditation. The complete costs for LEED Green Associate accreditation varies. The USGBC website provides information on the Steps to Become a LEED Green Associate.

There is no need for a college degree. “Literally anyone can take the course if they can read, memorize some information, and add and subtract,” says Azzarello.

The USGBC LEED Green Associate exam measures general knowledge of green building practices and how to support others working on LEED projects. “The exam is ideal for those new to green building. It’s an accreditation that can enhance your current endeavors, and also open doors to new career opportunities,” Azzarello explains. “LEED accreditation is a globally recognized symbol of sustainability achievement and leadership.”

Depending on interest, Azzarello may offer more LEED training to Michigan Tech students, faculty and staff. Next up would be the LEED Accredited Professional Exam for individuals who actively work on green building and LEED projects.

Azzarello is a LEED AP® and a registered and active USGBC® Faculty™. He is licensed to instruct multiple USGBC workshops and has led workshops throughout the United States, Mexico, South America, China, Thailand, Hong Kong, Singapore and Vietnam. He truly enjoys instructing and sharing his 20-plus years of USGBC and LEED experience while bringing new professionals into the green building movement.

Azzarello earned his BS in Mechanical Engineering from Michigan Tech 1978 and an MS in Environmental Engineering in 1996 from Wayne State University. He is an adjunct instructor in the Department of Chemical Engineering, and also serves as advisor to Michigan Tech’s Alternative Energy Enterprise team. 

“I am at the stage of my life now where it is time to give back to Michigan Tech and the community and am in the position to do so,” says Azzarello. “Without a degree from MTU I am not sure how my life would have turned out. I feel very fortunate to be able to give back.”

Prior to joining Michigan Tech, Azarello retired from Kohler Co. as a senior staff engineer focused on sustainability, directing the company’s green building efforts and serving as a global consultant to customers developing green building projects. With decades spent in the environmental field, Azzarello’s resume touts myriad experiences with recycling, energy efficiency, sustainability, co-generation, marketing, sustainable product design and green building design, and construction programs for several Fortune 500 companies, along with multiple smaller organizations as a sustainability consultant. He also served as Yellowstone National Park’s green building consultant. 

Azzarello has been a part of the green building movement since its beginning. He served on the USGBC’s first Board of Directors as Vice Chairman, actively involved as a Board member during its formative years. He helped pave the way for LEED by participating in the Beta testing of the newly developed green building guidelines that became known as LEED v1.0. Read Joe Azzarello’s full bio.

Read more:

Feathered Friend Helps Launch Green Career: Kohler’s Resident Green Building Guru Started on a Very Different Career Path

Dean’s Teaching Showcase: Timothy Eisele

Tim Eisele
Tim Eisele

Dean Janet Callahan has selected Timothy Eisele, associate professor in the Department of Chemical Engineering, as our seventh 2022 Deans’ Teaching Showcase member.

Eisele will be recognized at an end-of-term event with other showcase members and is also a candidate for the CTL Instructional Award Series.

Eisele was selected for his record of engaging students in the classroom through hands-on experiential learning and relating material to real-world examples and his own research.

Among the variety of classes taught by Eisele are courses focused on the extraction of metal ions from fluids. While these align with his research expertise, available textbooks often don’t include the latest research in the field. Eisele fills that gap by working continuously to improve his class notes and handouts each year. He also develops unique in-class demonstrations and laboratories that elucidate these current topics. His priority is to make these accessible and connected to his students’ world. For example, in Hydrometallurgy/Pyrometallurgy, there is a copper electrowinning experiment students are able to conduct entirely at home. Eisele’s philosophy focuses on helping students develop a deep understanding of the subject material, so they can internalize what they are learning and remain engaged.

Callahan especially appreciates this ability to find and do science outside of the lab. “Dr. Eisele finds experiments to do — even in his own backyard,” she notes. “I recently had him as a guest for Michigan Tech’s Zoom webinar series, Husky Bites, where he relayed how he has developed a way to extract manganese and iron by using naturally occurring anaerobic iron-dissolving organisms.”

Chemical Engineering chair Pradeep Agrawal highlighted two other distinguishing features of Eisele’s teaching: his passion and genuine concern for engaging students. “The students readily sense his enthusiasm for the subject matter and his desire to engage them with the material,” writes Agrawal, who emphasizes that Eisele’s willingness to take time to relate class topics to the real world — while also respecting the parameters of being a student in today’s pandemic context — helps students as they master difficult topics.

“Active learning, enthusiasm for the subject, clear explanations and a strongly organized course are descriptors that align with Eisele’s approach to teaching,” summarized Callahan. “It is a pleasure to nominate Dr. Eisele for the Dean’s Teaching Showcase.”

Martha Sloan: Tech Tales Emeritus

Professor Emerita Martha Sloan changed the face of both Michigan Tech and engineering education.

Martha Sloan shares her knowledge on Husky Bites, a free, interactive Zoom webinar this Monday, February 28 at 6 pm ET. Learn something new in just 30 minutes (or so), with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What are you doing for supper this Monday night 2/28 at 6 ET? Grab a bite with Dean Janet Callahan and Michigan Tech Professor Emerita Martha Sloan, whose impact on people on and off the Michigan Tech campus has been monumental. During Husky Bites, Prof. Sloan will share stories from an earlier time at Michigan Tech, when women in engineering were few and far between.

Joining in during Husky Bites will be Dan Fuhrmann, the Dave House Professor of Computer Engineering and chair of the Department of Applied Computing at Michigan Tech.

“Martha was a faculty member in the Department of Electrical and Computer Engineering when I first came to Michigan Tech in 2008 to take the position of ECE department chair,” notes Fuhrmann. “Shortly thereafter I appointed her as associate chair, a position she held until 2012, just before her retirement after 43 years of service at Michigan Tech.”

Applied Computing Department Chair Dan Fuhrmann

A pioneer in many aspects of her career, Sloan is also a legendary mentor who always has time to help anyone who asks. She was the first woman to be hired as a faculty member in the Michigan Tech ECE department, and later became the first woman to serve as chair of the department. Sloan was also the first woman to become the president of the Institute of Electrical and Electronics Engineers (IEEE), the largest professional organization in the world.

Sloan earned all of her three degrees–a BS in Electrical Engineering with great distinction, an MS in Electrical Engineering, and a PhD in Education–at Stanford University. She earned her BSEE in 1961, Phi Beta Kappa and with great distinction, as the only woman among approximately 600 engineering graduates.

Prof. Sloan took home the ASEE Outstanding Young Electrical Engineering Educator Award.

In the 1960s she worked at the Palo Alto Research Laboratory of the Lockheed Missiles and Space Company. She began a PhD program at the Massachusetts Institute of Technology but, feeling isolated there and pregnant with her first child, she did not complete the program. Instead, she moved to Germany, where she taught for two years at the Frankfurt International School. 

“My German was not good enough to be able to work as an engineer, so I taught 7th and 8th grade science, and picked up a MS in secondary education–all  in German–while I was there, too,” Sloan recalls. 

In 1969 Sloan moved to Houghton, Michigan with her husband, Norman Sloan, who had accepted a position as a professor of ornithology, forestry, and wildlife management at Michigan Tech.

As a role model and mentor, Dr. Martha Sloan supports women across campus and around the globe.

“I found myself looking for a job once again and thought I’d go back to teaching,” she says. “At the time there was no need for math or science teachers in the Houghton area. On sheer impulse, I wandered into Michigan Tech’s EE department, just to see if they needed a teacher, since I had a master’s degree. I was hired on the spot to teach Circuits.”

Needing a doctorate for her new job at Michigan Tech, Sloan returned to Stanford to earn a PhD in Education in 1973. Her thesis was on the COSINE Committee, an NSF-funded project to include computer engineering as part of the electrical engineering curriculum. 

Sloan became active in engineering professional societies, serving as treasurer, vice president, and president of the IEEE Computer Society, IEEE, and AAES. She served for nine years on the board of trustees of SWE, the Society of Women Engineers.

To pay tribute to Dr. Martha Sloan’s impressive legacy at Tech and her groundbreaking achievements, ECE alumna Jane Fryman Laird ’68 dedicated a bench at Husky Plaza in Dr. Sloan’s honor. 

Over the years Sloan has been honored with the Frederick Emmons Terman Award by the American Society for Engineering Education (ASEE), the IEEE Centennial Medal, and the IEEE Richard E. Merwin Distinguished Service Award. She received an honorary doctorate from Concordia University, was elected fellow of the Association for Computing Machinery, given the Distinguished Engineering Educator Award of the Society of Women Engineers (SWE), and earned the Michigan Tech Distinguished Service Award, too. (Read Professor Sloan’s complete bio on Wikipedia.)

In 1991 Sloan became a fellow of the IEEE “for contributions to engineering education, leadership in the development of computer engineering education as a discipline, and leadership in extending engineering education to women.”

I’ve liked math and science since grade school, especially physics.

Professor Emerita Martha Sloan

Prof. Sloan, How did you first get into engineering? What sparked your interest?

Dr. Sloan holds her infant grandchild
Prof. Sloan is recognized by the Michigan Tech Alumni Association as an Honorary Michigan Tech Alumna.

The summer before my senior year in high school, I attended a five-week science and technology program at Northwestern University’s National High School Institute, with lectures and labs on all science and engineering programs Northwestern offered, plus field trips to industry in northern Illinois and Indiana. I was particularly enchanted by a unit on AC circuits taught from a book by Kerchner and Corcoran, which I later learned was the standard college text on the subject. By the end of the summer I was the top student in the program—I didn’t know there was a contest—and won a full scholarship to Northwestern. But I didn’t go to Northwestern; I went to Stanford, which I chose because the campus was so beautiful. This was before Stanford was as highly ranked as it is today (it was near the bottom of the top 20).

Prof. Sloan with her children and their spouses, all highly accomplished and then some.

I intended to major in physics, but then, in the  summer just before my freshman year, a letter arrived from Stanford advising me that if I had any thought of possibly majoring in engineering, I should start in engineering because transferring out was easy but transferring in might delay my graduation. So I chose electrical engineering, based on liking AC circuits.

Hometown and family?

I was born in Aurora, Illinois to an obstetrician and stay-at-home mom. They had both majored in chemistry in college. My brother became a math professor and assistant chair of the math department at the University of Illinois.

Three of Prof. Sloan’s adorable grandkids!

My daughter is a law professor at Chicago Kent. Her daughter (my granddaughter) earned an MS in Public Health and conducts research in Boston on comorbidities, when a patient has two or more diseases or medical conditions the same time. She has boy-girl twins who are now both studying medicine at different medical schools in Chicago. In addition, my great granddaughter’s longtime boyfriend is studying at a third Chicago medical school—so the family has Chicago medical schools almost covered! 

My son graduated from the US Naval Academy, spent 20 years in the Marines, and is now working on safety aspects of autonomous vehicles for General Motors. He and his wife, also a USNA graduate, have three young children.

Any hobbies? Pets? What do you like to do in your spare time?

I have two springer spaniels. I spend my spare time reading–and doing some writing, too. I’ve taken two classes on writing memoirs in the past year.

Prof. Dan Fuhrmann’s research focus: signal processing.

Prof. Furhmann, how did you first get into engineering and computing? What sparked your interest?

I was good at math and science in junior high and high school, so it just seemed like a natural path.

Hometown, family?

Born in Bartlesville, Oklahoma and later moved to Tulsa, Oklahoma. I am the youngest of four children. Currently married 26 years with three grown children in a blended family.

Upper Peninsula of Michigan, or Steamboat Springs, Colorado? Find out during Husky Bites!

What do you like to do in your spare time?

Jamming on the deck!

I’ve played piano semi-professionally my entire adult life, including jazz, pop, rock, and salsa. I enjoy both downhill and cross-country skiing. I try to take advantage of the Copper Country winters!

Read more

Jane Fryman Laird ’68 and Dr. Martha Sloan – Blazing a Trail for Generations of Tech Women
Martha Sloan IEEE Computer Society President and Award Recipient
Oral History Transcript – Martha Sloan: Engineering and Technology History Wiki

Interview with Dr. Sarah Rajala ’74

Sage advice from Dr. Sarah Rajala: “Take ownership of your learning!”

Michigan Tech electrical engineering alumna Dr. Sarah Rajala is professor emeritus and former dean of engineering at Iowa State University. She’s an internationally-known leader in the field of engineering education—and a pioneering ground breaker for women in engineering. She serves as a role model for young women and is passionate about diversity of thought and culture, especially in a college environment.

This month we celebrate with Dr. Rajala—she was elected to the National Academy of Engineering, one of the highest professional recognitions in engineering.

Dr. Rajala, how did Michigan Tech prepare you as a leader in engineering education? Or simply as a leader?

Being the only female in my electrical engineering class, I experienced numerous gender biases. In the early 1970s, there was still much skepticism about whether ‘a girl could be an engineer’. My experiences laid a foundation for my commitment to creating a more inclusive culture in engineering and in engineering education, in general. 

You have kept busy, pushing the boundaries across your entire career. What advice do you have for mid-career people looking for their next challenges and opportunities?

First, take advantage of the opportunities that are offered, especially if they allow you to expand your boundaries. Don’t be shy about raising your hand and indicating your interest. Professional societies are great places to find new challenges and opportunities. Of course, it is also important to set your priorities and know when to say no. Also keep in mind that there is no single path that is right for everyone.  

Based on what you’ve learned as an educator, do you have one or two pieces of advice for a high school junior or senior?

We each learn new material in different ways. Don’t decide you dislike a subject because you don’t like the way the teacher presents the material. And don’t be afraid to ask questions or ask the teacher if she/he can present the topic differently. Alternatively, work with your fellow students or another teacher who can help you explore the topic in a different way. Search the internet. There are many good resources out there that can supplement what you are learning in class. Take ownership of your learning!

What qualities do students need to develop in themselves in order to become solvers of problems?

Start with the fundamentals. Be inquisitive. Write down what you know and try to start working the problem. If you are really stuck, ask for help. Show someone what you have done so far, then ask for a hint to help you get started.  You will learn more, if you can get started and work the rest out for yourself.

Where do you think engineering education will be 20 years from now?

I hope we are more inclusive! No matter how one learns, we should be able to adapt our instructional approaches to engage and motivate everyone. Technology will likely play a larger role in the learning process. There will be an increasing number of new subjects to learn. Students and educators will all need to adapt to new ways to teach and learn. 

Samson A. Jenekhe, Michigan Tech Alumnus, Elected to the National Academy of Engineering

Professor Sam Jenekhe’s pioneering polymer research paved the way for commercial OLEDs

Michigan Tech alumnus Samson A Jenekhe ’77 has been elected to the National Academy of Engineering, among the highest professional distinctions accorded to an engineer. Dr. Jenekhe is honored for discovery and understanding of conjugated materials for organic light-emitting diodes (OLEDs) widely used in the commercial sector.

A professor of chemistry and the Boeing-Martin Professor of Chemical Engineering at the University of Washington, Jenekhe studies the fundamental physical and chemical properties of semiconductor materials, as well as their practical applications. Research topics have included organic and flexible electronics, the use of organic light-emitting diodes for lighting and displays, energy storage and conversion systems, semiconducting polymers and polymer-based photovoltaic systems.

Jenekhe is a Chemical Engineer who earned his BS at Michigan Tech and his MS, MA, and PhD at the University of Minnesota. Jenekhe worked as a research scientist for Honeywell, Inc. and later joined the faculty at the University of Rochester, before joining the faculty at the University of Washington in 2000.

He is a fellow of the American Association for the Advancement of Science, the Royal Society of Chemistry and the American Physical Society, which in 2021 also awarded him the Polymer Physics Prize. He also received the Charles M.A. Stine Award for Excellence in Materials Science from the American Institute for Chemical Engineers in 2014.

Read More

Samson A. Jenekhe’s Pioneering Polymer Work Paved the Way for Commercial OLEDs
US Department of Energy: OLED Basics

Watch

Distinguished Chemical Engineering Seminar given by Professor Samson Jenekhe, University of Washington. Held on 2 March 2016 at the Department of Chemical Engineering, Imperial College London.

Play Plastic electronics and photovoltaics video
Preview image for Plastic electronics and photovoltaics video

Plastic electronics and photovoltaics

Zhanping You: Where the Rubber Meets the Road

Professor Zhanping You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. 
Professor Zhanping You

Zhanping You generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan back on Monday, February 21. You can view the YouTube recording of his session to learn something new in just 30 minutes (or so). Here’s the link to watch. Register for future sessions of Husky Bites at mtu.edu/huskybites. Grab some supper, or just flop down on your couch. Everyone’s welcome! It’s BYOC (Bring Your Own Curiosity).

Dr. Zhanping You, a Distinguished Professor of Transportation Engineering in the Department of Civil, Environmental and Geospatial Engineering, uses old tires to make new roads. One of Prof. You’s doctoral students, Dongzhao “Kobe” Jin, joined in to talk about the process.

Kobe Jin

Dr. You works with recycled materials to improve asphalt pavement performance. Crumb rubber, made from scrap tires, is one such material. ”Crumb rubber in asphalt reduces rutting and cracks and extends life, and it lowers noise levels,” he says. 

Scrap tires are plentiful, though not in a good way. “Hundreds of millions of scrap tires are generated in the US every year,” he notes. “Those giant piles of waste tires pose concerns of potential contamination of local groundwater and fire risk.”

You and his team of students have engineered crumb rubber from waste tires into a sustainable rubber asphalt material for a better road. “We do it through various experimental and numerical modeling techniques,” You explains. “Our research team has also expanded the work to include field pilot projects, too. Over the past 6-7 years or so, we’ve constructed quite a few roads in Michigan that use recycled tire rubber.” The team works with the Michigan Department of Environment, Great Lakes, and Energy (EGLE) and the EGLE Scrap Tire division, plus road commissions in Dickinson County, Kent County, St. Clair County, Clare County, and Bay County.

“Teaching provides me with broad dimensions to sharpen my research vision, while research helps me develop in-depth understanding so that I can teach better,” Dr. You says.

Another material You and his team employ: pavement rubble. “More than 94% of the roads in the United States are paved with asphalt mix—about 360 million tons each year. In turn, that generates over 60 million tons of old asphalt pavement waste and rubble,” he notes. Recycling these waste materials not only greatly reduces the consumption of neat asphalt mix, it also lowers related environmental pollution, he adds. 

Blending recycled asphalt pavement (RAP) with fresh asphalt mix has presented several challenges for You and his team. “One noticeable issue of using RAP in asphalt pavement is the relatively weaker bond between the RAP and neat asphalt, which may cause moisture susceptibility,” he says. “We have determined that modifying the asphalt mix procedure and selecting the correct neat asphalt can effectively address this concern.” 

Before the recycled asphalt-tire-gravel mix ever makes it outside, You and his research team do plenty of work indoors, using computer modeling and lab tests to make sure they put viable material out in the elements. 

“When crumb rubber is blended into an asphalt binder, the stiffness of the asphalt binder is increased,” You explains. “ A higher mixing temperature is needed to preserve the flowability of asphalt binder. Conventional hot-mix asphalt uses a lot of energy and releases a lot of fumes. To solve this problem we developed a warm mix technology, a foaming process at lower temperatures, that requires less energy and reduces greenhouse gas emissions.” 

You and his group developed and tested several foaming technologies for warm mix asphalt, integrating state-of-the-art rheological and accelerated aging tests, thermodynamics, poromechanics, chemical changes and multi-scale modeling to identify the physical and mechanical properties of foamed asphalt materials. 

You has other solutions in the works, too, including man-made asphalt derived from biomass. “We tried using bio oil (derived from biomass) in asphalt and found it also improved pavement performance,” he says. 

Not even the pandemic can stop the construction of recycled roads in Michigan!
A Michigan Tech research team of students led by Zhanping You tests a new, cooler way to make rubberized asphalt in Michigan’s Upper Peninsula.

“Asphalt made from bio oil can potentially reduce the consumption of petroleum asphalt and lower the production temperature while road rutting resistance can be improved. We actively work with local, state, and national recycling efforts to develop better road materials, using plastics, waste glass, and several other recyclables, too,” he notes. “We hope our efforts will contribute to a circular and low-carbon economy.”

Prof. You, how did you first get into engineering? What sparked your interest?

I got into civil engineering accidentally, but started to love it. When I was little, I had debates with my friends on the possible damage on roads–was it the load or the pressure from the tires?

Hometown, family?

I view Houghton as my hometown now since I have been here almost 17 years, even though I was born and raised in Northwest China.

A lot of testing goes on in Dr. You’s lab at Michigan Tech.

What do you like to do in your spare time?

I love to read books—non-engineering, engineering, history, and literature. I’m also a recently appointed coadvisor to the Michigan Tech student chapter of Society of Asian Scientists and Engineers (SASE). After years of service in various professional groups at Michigan Tech, I believe an organization of Asian students involved in science and engineering is really needed.

Kobe, how did you first get into engineering? What sparked your interest?

Says Kobe: “Dr. You’s humor, lifestyle, rigorous academic attitude, and profound understanding of sustainable pavement all impact me a lot.”

The first time I got interested in engineering was when they were paving the concrete road in my hometown. I became interested in how and why a mix of some aggregate, sand, and water could create such a hard road.

Hometown, family?

My hometown is a small county in Henan Province, China. I have two sisters and I love my family.

Any hobbies? Pets? 

I like cats and basketball (I go by Kobe in honor of my favorite basketball player). I read science fiction books during my spare time.

Read More

Q&A with Research Award Winner Zhanping You
When Rubber Becomes the Road

Kobe enjoys the Houghton Waterfront Park near campus (even in the middle of winter!)

Michigan Tech Alumna Sarah Rajala Elected to the National Academy of Engineering

Dr. Sarah Rajala

Sarah A. Rajala ’74, a Michigan Tech electrical engineering alumna, has been elected to the National Academy of Engineering. It is one of the highest professional distinctions accorded to an engineer. Dr. Rajala is honored for “innovations in engineering education: outcomes assessment, greater participation and retention of women in engineering, and an enhanced global community.” New members of the NAE will be formally inducted in October at the NAE’s annual meeting.

Rajala is an internationally-known leader in the field of engineering education and a ground breaker for women in engineering. She serves as a role model for young women and is passionate about diversity of thought and culture, especially in a college environment.

Originally from the Upper Peninsula of Michigan (Skandia), Rajala earned her bachelor’s degree in electrical engineering at Michigan Tech. She went on to earn masters and doctoral degrees at Rice University, and then embarked on primarily an academic career, working as a faculty member at North Carolina State University, Purdue University, and ultimately Iowa State University, where she served the engineering profession in a leadership role as the Dean of the College of Engineering until her recent retirement.

Rajala’s extensive professional leadership in the field of engineering education has included serving as president of the American Society for Engineering Education and chair of the Global Engineering Deans Council.

Across her career, in addition to working in a scholarly and teaching capacity as a professor of electrical engineering, Dr. Rajala also provided volunteer service in many professional and leadership roles. Her service roles to the societies for which she contributed culminated in important national leadership positions. These include serving as chair of the Engineering Accreditation Commission of ABET, the engineering accreditation body for engineering programs, and also as president of the American Society of Engineering Education (ASEE). 

At Michigan Tech, Rajala is a member of the Electrical Engineering Academy, inaugural recipient of the Academy for Engineering Education Leadership, and a member of the President’s Council of Alumnae, among many other honors. 

“Dr. Rajala has been an influential person to many people across her career, including me. I am incredibly proud to hear of Dr. Rajala’s election into the National Academy of Engineering,” said Dean Janet Callahan.

“I first met Sarah many years ago at the annual meeting of the American Society for Engineering Education. Later, she reached out to me when she heard I had joined Michigan Tech as the College of Engineering’s next dean. She told me, ‘You will love Michigan Tech—it is a supportive community that truly fosters the principle of tenacity.’”

Now an Iowa State professor emeritus of electrical and computer engineering, Rajala continues to be an internationally known leader in engineering. She is a fellow of the American Association for the Advancement of Science, ABET, the American Society for Engineering Education (ASEE) and the Institute of Electrical and Electronic Engineers (IEEE). Rajala has also received numerous other top awards including national engineer of the year award by the American Association of Engineering Societies and the national Harriett B. Rigas Award from the IEEE honoring outstanding female faculty.

Read more

An Interview with Dr. Sarah Rajala

To Learn From and Celebrate: Academy for Engineering Education Leadership Established

Watch

Among her many honors, Dr. Sarah Rajala received the ABET Fellow Award in 2016. This video, created by ABET in her honor, details Dr. Rajala’s inspiring accomplishments.