Also In This Section
  • Topics

  • Category: News

    1010 with … Dr. Alex Sergeyev, Applied Computing


    Are you a high school student, current undergraduate student, or a recent BS graduate? Are you are interested in robotics, automation, and controls?

    “If you’d like to learn more about the Mechatronics and the BS and MS programs at Michigan Tech, please join this 1010 conversation,” Professor Alex Sergeyev urges.

    You are invited to spend one-zero-one-zero—that is, ten—minutes with Dr. Aleksandr Sergeyev on Thursday, April 15, from 4:30 to 4:40 p.m. EST.


    Dr. Sergeyev is a professor in the Applied Computing department and director of the Mechatronics graduate program. He also directs the FANUC Certified Industrial Robotics Training Center at Michigan Tech.

    Dr. Sergeyev will discuss his research, the Applied Computing department, and the Mechatronics BS and MS programs. He will answer questions following his presentation.

    Michigan Tech is a pioneer in Mechatronics education, having introduced a graduate degree program in 20xx, and a bachelor’s program in Fall 2019.

    “Mechatronics is an industry buzzword synonymous with robotics, controls, automation, and electromechanical engineering,” Sergeyev says.

    In his presentation, he will discuss Mechatronics in general, explain what the degree has to offer, job opportunities in Mechatronics, and some of the research he is conducting in this field.

    In Spring 2021, a Mechatronics Playground was opened on campus. The hands-on learning lab and industry-grade equipment was funded by alumnus Mark Gauthier of Donald Engineering, Grand Rapids, MI, and other major companies.

    A common degree in Europe, China, Japan, Russia, and India, advanced study in Mechatronics is an underdeveloped academic discipline in the United States, even though the industrial demand for these professionals is enormous, and continues to grow.

    Sergeyev’s areas of expertise are in electrical and computer engineering, physics, and adaptive optics, and his professional interests include robotics. He is principal investigator for research grants totaling more that $1 million. He received both his MS and PhD degrees at Michigan Tech, in physics and electrical and computer engineering, respectively.

    We look forward to spending 1010 minutes with you!


    Call for Manuscripts: Fault Tolerance in Cloud/Edge/Fog Computing

    Call for Manuscripts:

    Special Issue on Fault Tolerance in Cloud/Edge/Fog Computing in Future Internet, an international peer-reviewed open access monthly journal published by MDPI.

    Informational Flyer

    https://blogs.mtu.edu/icc/files/2021/04/ali-ebnenasir-call-for-papers-032521-sm.pdf

    Deadline

    April 20, 2021

    Author Notification

    June 10, 2021

    Website

    mdpi.com/journal/futureinternet/special_issues/FT_CEFC

    Collection Editors

    Keywords

    • Fault tolerance
    • Cloud computing
    • Edge computing
    • Resource-constrained devices
    • Distributed protocols
    • State replication

    Topics

    Including, but not limited to:

    • Faults and failures in cloud and edge computing.
    • State replication on edge devices under the scarcity of resources.
    • Fault tolerance mechanism on the edge and in the cloud.
    • Models for the predication of service latency and costs in distributed fault-tolerant protocols on the edge and in the cloud.
    • Fault-tolerant distributed protocols for resource management of edge devices.
    • Fault-tolerant edge/cloud computing.
    • Fault-tolerant computing on low-end devices.
    • Load balancing (on the edge and in the cloud) in the presence of failures.
    • Fault-tolerant data intensive applications on the edge and the cloud.
    • Metrics and benchmarks for the evaluation of fault tolerance mechanisms in cloud/edge computing.

    Background

    The Internet of Things (IoT) has brought a new era of computing that permeates in almost every aspect of our lives. Low-end IoT devices (e.g., smart sensors) are almost everywhere, monitoring and controlling the private and public infrastructure (e.g., home appliances, urban transportation, water management system) of our modern life. Low-end IoT devices communicate enormous amount of data to the cloud computing centers through intermediate devices, a.k.a. edge devices, that benefit from stronger computational resources (e.g., memory, processing power).

    To enhance the throughput and resiliency of such a three-tier architecture (i.e., low-end devices, edge devices and the cloud), it is desirable to perform some tasks (e.g., storing shared objects) on edge devices instead of delegating everything to the cloud. Moreover, any sort of failure in this three-tier architecture would undermine the quality of service and the reliability of services provided to the end users.

    Scope

    Theoretical and experimental methods that incorporate fault tolerance in cloud and edge computing, which have the potential to improve the overall robustness of services in three-tier architectures.

    Manuscript Submission Information

    Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website (https://www.mdpi.com/user/login/). Once you are registered, click here to go to the submission form (https://susy.mdpi.com/user/manuscripts/upload/?journal=futureinternet).

    Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

    Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page.

    Please visit the Instructions for Authors page before submitting a manuscript.

    The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English.

    Authors may use MDPI’s English editing service prior to publication or during author revisions.


    Sangyoon Han Publishes Paper in eLife

    eLife, a prestigious journal in cell biology, has published a paper co-written by Sangyoon Han, “Pre-complexation of talin and vinculin without tension is required for efficient nascent adhesion maturation.”

    Dr. Han is an assistant professor in the Biomedical Engineering department, and a member of the Data Sciences research group of the Institute of Computing and Cybersystems (ICC).

    View the paper here.

    eLife is a non-profit organization created by funders and led by researchers. Their mission is to accelerate discovery by operating a platform for research communication that encourages and recognizes the most responsible behaviors.


    1010 with Jung Bae, Applied Computing, ME-EM


    You are invited to spend one-zero-one-zero—that is, ten—minutes with Dr. Jung Yun Bae on Thursday, April 1, from 4:30 to 4:40 p.m. EST.

    Dr. Bae is an Assistant Professor in the Applied Computing and Mechanical Engineering-Engineering Mechanics departments.

    She will discuss her research, the Applied Computing department, and answer questions.

    Dr. Bae earned her Ph.D. in Mechanical Engineering at Texas A&M University and worked as a research professor at Korea University before she joined Michigan Tech.

    Dr. Bae’s research interests include:

    • Robotics, Multi-robot systems
    • Coordination of Heterogeneous Robot Systems
    • Vehicle Routing Problems
    • Multi-robot System Control and Optimization
    • Autonomous Navigation
    • Unmanned Vehicles
    • Operational Research for Autonomous Vehicles

    We look forward to spending 1010 minutes with you!

    Visit the 1010 with … webpage here.


    Sidike Paheding, Applied Computing, Publishes Paper in IEEE Access

    A paper co-authored by Sidike Paheding, Applied Computing, has been published in the journal, IEEE Access. “Trends in Deep Learning for Medical Hyperspectral Image Analysis,” was available for early access on March 24, 2021.

    The paper discusses the implementation of deep learning for medical hyperspectral imaging.

    Co-authors of the paper are Uzair Khan, Colin Elkin, and Vijay Devabhaktuni, all with the Department of Electrical and Computer Engineering, Purdue University Northwest.

    Abstract

    Deep learning algorithms have seen acute growth of interest in their applications throughout several fields of interest in the last decade, with medical hyperspectral imaging being a particularly promising domain. So far, to the best of our knowledge, there is no review paper that discusses the implementation of deep learning for medical hyperspectral imaging, which is what this work aims to accomplish by examining publications that currently utilize deep learning to perform effective analysis of medical hyperspectral imagery.

    This paper discusses deep learning concepts that are relevant and applicable to medical hyperspectral imaging analysis, several of which have been implemented since the boom in deep learning. This will comprise of reviewing the use of deep learning for classification, segmentation, and detection in order to investigate the analysis of medical hyperspectral imaging. Lastly, we discuss the current and future challenges pertaining to this discipline and the possible efforts to overcome such trials.

    DOI: 10.1109/ACCESS.2021.3068392

    IEEE Access is a multidisciplinary, applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE’s fields of interest. Supported by article processing charges, its hallmarks are a rapid peer review and publication process with open access to all readers.


    Human Factors Grad Student Wins Hackathon, Cites Pandemic for Opportunity

    One Michigan Tech graduate student found a silver lining of the pandemic-driven shift to remote study: the ability to gain experiences previously prevented by distance. And “gained experience” is an understatement, as Brooke Poyhonen recently was on the winning team in the Texas Health Care Challenge, an online hackathon that sought solutions to problems in health care.

    The winning project, from Team WatsonCares, focused on women’s postpartum health and proposed a suite of services for new mothers:

    • A natural-language chatbot, powered by IBM Watson’s AI, to answer patient questions about both mental and physical health
    • A community feature allowing postpartum women to support one another
    • Deep informational and support resources

    Poyhonen said the team came together because after hearing initial “problem pitches,” in which existing teams outline the projects they want to tackle, some were uninterested in the originally pitched ideas. So they created their own team. “Ideally, we want the chatbot to be personalized to the patient’s history,” she said. “And we wanted to create a safe space for women to talk to each other.”

    Poyhonen will complete her accelerated M.S. in applied cognitive science and human factors this spring. She earned a B.S. in psychology from Michigan Tech in 2020. Both degrees are offered by the Cognitive and Learning Sciences department in the University’s College of Sciences and Arts.

    The Texas challenge is normally on-site only, and she appreciated the chance to participate and urges other students to seek out similar opportunities. “It was great to meet people from around the country and work with a team on a real-world goal,” Poyhonen said. “It’s a great networking opportunity and gives me a concrete project to discuss in interviews. It was just so rewarding.”

    The team’s prize included $120,000 in credits toward IBM products and services, a smaller cash award, and temporary office space with a Dallas venture capital firm. Poyhonen is working with team members on the project as a start-up while also pursuing other opportunities.

    She got her first taste of hackathons over the winter in the Work Related Musculoskeletal Disorders Grand Challenge, run by the American Registry for Diagnostic Medical Sonography. The challenge was to help the up to 90% of sonographers who develop disorders such as occupational overuse syndrome. Her team, which included a sonography mentor, an engineering student and two sonography students, created the Air Buddy, a device to help sonographers apply pressure to a probe with reduced physical stress. Poyhonen’s team won first place after judges deliberated for an entire week after the month-long window for teams to work on the problem.

    Kelly Steelman, interim chair of the Cognitive and Learning Sciences Department, said hackathons are great supplements to classroom experiences. “I commend Brooke for taking the initiative to seek out design challenges as a way to build her portfolio of experiences and hone the skills she’s learned in our program,” Steelman said. “Brooke took advantage of opportunities through outside organizations, but we also offer hack-a-thons right here on campus.”

    She said Husky Innovate is currently planning their inaugural hack-a-thon as part of an initiative to grow the human-centered design community at Michigan Tech. For more information on this, contact Lisa Casper.

    Dr. Steelman is a member of the Human-Centered Computing research group of the Institute of Computing and Cybersystems (ICC).

    Michigan Tech’s graduate program in Applied Cognitive Science and Human Factors teaches students how to apply principles of psychology to the design and evaluation of human-technological systems. Steelman said Beth Veinott, director of the Center for Human-Centered Computing, frequently reinforces for students that, “If you get the psychology right first, you design the right system, it is easier to train, and people are more likely to adopt it.”


    PhD Defense: Jinxiang Liu, Monday, April 2, 1-3 pm

    PhD candidate Jinxiang Liu, Computer Science, will present his PhD Defense on Monday, April 12, 2021, from 1:00 to 3:00 p.m.

    The title of Liu’s dissertation is, “Prediction of Coincident Peak Days in Electricity System: A Case Study for Classification on Imbalanced Data.”

    Dissertation Abstract

    To guarantee sufficient electricity supply for its highest demands, many regional organizations surcharge their customers during coincident peaks (CPs), a time of highest demand across the system or region of interest. Therefore, the accurate prediction of these coincident peaks would be helpful not only for companies to ensure sufficient generation is available, but also for customers who may try to avoid electricity consumption and consequent additional cost.

    This dissertation focuses on the prediction of the top five coincident peak days (5CPs) in a year. We used classification models to solve this imbalanced prediction problem (around 1.3\% for positive cases) by classifying the next day as 5CP days or non-5CP days.

    We analyze six sets of actual historical data from different regions of Canada and the United States. We explore the effect of forecast accuracy on 5CP days prediction through four cases: I – knowing tomorrow’s power demand and weather condition exactly (an oracle), II & III – knowing some information about tomorrow (an oracle + increasing noise), and IV – no knowledge of future.

    We proposed a three-phase model to predict 5CP days: first, clustering is applied to filter some negative cases, second, an all convolutional neural network that estimates the probability of being a 5CP day for the remaining cases is learned, and third, an adaptive method is used determines thresholds.

    This three-phase model exhibits promising performances with the highest mean recall of 1.00, mean precision of 0.56, and mean F1 score of 0.72. Finally, we explored the use of a few-short learning framework to this problem. A triplet network is implemented for the 2-way-5-shot classifications. The prediction results have the highest mean recall of 1.00, mean precision of 0.67, and mean F1 score of 0.79.


    Register for Michigan Tech’s Design Expo, Thursday, April 15

    by Pavlis Honor College

    Now’s the time to register to attend Virtual Design Expo, the annual Enterprise and Senior Design project showcase at Michigan Tech.

    Once again, for the second time ever in its 21-year history, Design Expo will take place virtually. We’ve excitedly taken lessons learned from last year’s first virtual Expo and fused it with new ways of connecting to make the 2021 Design Expo more engaging and safe to attend in real-time!

    Design Expo puts our undergraduate student innovators and their corporate and community sponsors and faculty advisors front and center.

    Every year, teams showcase their solutions to complex, real-world and life-changing challenges. Teams compete for thousands of dollars in cash awards—and receive priceless, well-deserved recognition. 

    Guests and judges will need to register in order to attend by April 9. 

    This year’s event will happen in multiple segments online via Zoom and Gatherly. 

    Monday, April 12

    • Noon — Remote, asynchronous viewing and judging of team videos opens on the Design Expo website, mtu.edu/expo.

    Thursday, April 15

    • 11 to 11:30 a.m. — Opening remarks via live Zoom webinar
    • 11:30 a.m. to 1:30 p.m. — Synchronous event with student teams begins: take part in real-time interaction/Q&A with students using Gatherly
    • 3 to 3:30 p.m. — Presentation of Awards via Zoom live webinar
    • 3:30 p.m. — Virtual Design Expo 2021 concludes

    Spring Celebration Update

    In light of recent changes to Michigan’s COVID-19 epidemic orders that increase the size of allowable group gatherings, Michigan Technological University has modified its graduation celebration planned for April 30, 2021 to allow families and guests to participate alongside their graduate.

    As announced in an earlier email to students, the University will host a graduation walk through campus to celebrate this significant milestone. Students may now invite up to six guests to walk with them. Details, including the start times, are still being worked out. Graduates who would like to participate will be asked to sign up prior to the celebration. A signup link will be emailed to all eligible graduates on March 22.

    As a reminder, Michigan Tech remains committed to the health and safety of our campus community. All guests and graduates will be required to wear a face mask at all times and practice social distancing during the event. Please be sure to check www.mtu.edu/commencement for the latest information.

    Congratulations, Huskies—you did it! The pride you feel now will only grow stronger with time. Your Michigan Tech family and our community joins you and your loved ones in celebrating your completion of this journey. 

    Regalia Update

    Regalia is encouraged, but not required at the outdoor event. Regalia can be ordered through Herff Jones with direct delivery to the graduate. If you have questions regarding your order, contact Michele Nash from Herff Jones at mnash@herffjones.com or 248-667-9018. 

    Class of 2021, you’ve done an amazing job! If you have any questions, contact commencement@mtu.edu.

    Please Note

    Neither participation in the commencement ceremony nor inclusion in the program constitutes official completion of degree requirements or the attainment of honors or other recognitions.

    Graduates do not receive their diploma at the commencement ceremony. Diplomas are mailed to the graduate approximately six weeks after degree requirements are met.