Author: Kim Geiger

Simplicity On the Other Side of Complexity: Todd Stone at Michigan Tech Thursday (Today)

Geologic Schematic of Arena Energy’s First Drill Well in the Gulf of Mexico.

Todd Stone, co-founder and managing director of geology at Arena Energy, will visit Michigan Tech today, Thursday, Sept. 17, 2020 to deliver the First-Year Engineering Lecture to Michigan Tech’s incoming engineering majors.

Todd Stone is an engineer, explorer, conservationist, and entrepreneur. He is a Michigan Tech alumnus (Geological Engineering ’85), and a distinguished member of Michigan Tech’s College of Engineering Advisory Board.

Stone is on campus today to deliver the annual First-Year Engineering Lecture, “Simplicity On the Other Side of Complexity,” on Thursday, September 17 at 6 pm. Registered attendees will be provided a zoom link to attend the lecture remotely. Please register for the Zoom session at mtu.edu/ef.

“At Michigan Tech you are going to learn how to learn; learn how to solve difficult technical problems logically. And that is going to change your world.” – Todd Stone ’85

“We have a tradition at Tech of having a first-year lecture that helps students see how their technological education can help make a difference in the world,” says Janet Callahan, Dean of the College of Engineering. “Usually the event is held at the Rozsa Center to a packed house, with every seat taken. We can’t do that this year, of course, due to the pandemic. Instead, Todd will present his lecture on Zoom, to an audience of 800-plus students. With Zoom, though, we have room for more, so please join us. Everyone is welcome.”

Stone’s lecture will outline how he learned to work smart in school and throughout his career. He plans to highlight something he feels is top priority: Learning how to learn.

When Stone arrived at Michigan Tech nearly 40 years ago, he says, “It was the best and most mature decision of my young life. At first it was not difficult for me to work hard. My folks raised me that way; it was difficult for me to work smart.”

Todd Stone majored in Geological Engineering at Michigan Tech.

More About Todd Stone

Since co-founding Arena Energy in 1999, Todd Stone has focused on opportunity generation and management of the company’s opportunity-generating staff and systems. Stone is also responsible for maintaining, managing and high-grading the company’s robust prospect inventory, and is part of a eight-person geological group that has drilled over 300 wells. Before co-founding Arena, he was a key member of Newfield Exploration’s offshore acquisition and development team. Stone began his career with Tenneco Oil Company and later served as a geological engineer at Amerada Hess Corporation. He earned his B.S. in geological engineering from Michigan Technological University in 1985.

Interested in joining the Michigan Tech First Year Engineering lecture via Zoom? It will take place Thursday, September 17, 2020 at 6 pm, followed by Q&A. Please register for the Zoom session at mtu.edu/ef.

Joshua Pearce: 3D Printing Waste into Profit

Joshua Pearce shares his knowledge on Husky Bites, a free, interactive webinar this Monday, September 14 at 6 pm EST. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

Dr. Joshua Pearce is the Richard Witte Endowed Professor of Materials Science and Engineering and Professor, Electrical and Computer Engineering

Want to know how you can save money, even make money, by turning your household waste into valuable products? Well, you’ve come to the right place. Professor Joshua Pearce and alumna Megan Kreiger, will cover the exploding areas of distributed recycling and distributed manufacturing. They’ll also explain just how using an open-source approach enables the 3-D printing of products for less than the cost of sales taxes on commercial equivalents.

3-D printing need not be limited to household items. In other words, don’t be afraid to think big—like the whole house! Kreiger’s team was the first to 3-D print a building in the Americas and last year they 3-D printed a 32-foot-long reinforced concrete footbridge.

Yes, you can 3-D print concrete, in addition to plastic and metal.

Kreiger was Pearce’s very first Michigan Tech graduate student. She earned her BS in Math in 2009, and her MS in Materials Science and Engineering in 2012, both at Michigan Tech. She is now Program Manager of Additive Construction at the US Army Engineer Research and Development Center.

Kreiger says she first became aware of 3-D printing at Michigan Tech, while working in Pearce’s 3-D printing lab. She worked with Pearce to show that distributed recycling and distributed manufacturing were better for the environment than traditional centralized processes.

“As the Program Manager for Additive Construction for ERDC, I lead a team of amazing researchers composed of engineers, scientists, technicians, and students,” says Michigan Tech Alumna Megan Kreiger. They created the first 3D printed footbridge in the Americas. “We were the first to look at continuous print operations and printing on unprepared surfaces.”

Pearce and his team of researchers in the MOST Lab (Michigan Tech Open Sustainability Technology) continue to focus on open and applied sustainability. As the Richard Witte Endowed Professor of Materials Science and Engineering, with a joint appointment in the Electrical and Computer Engineering, Pearce conducts research on photovoltaics ⁠— the materials behind solar energy⁠ — as a means to generate power in regions of the world where electricity is unavailable or prohibitively expensive. His research is also internationally renowned for its work in open source 3-D printing in order to enable both individuals as well as underserved regions to gain manufacturing capabilities.

Michigan Tech’s Open Source Hardware Enterprise developed the Granulator, a machine used to grind up plastic waste into usable feedstock that can be used in a filament extruder. Be sure to check out their site to learn more.

The MOST Lab, a cornerstone of Michigan Tech’s open source initiative, fosters strong collaboration between graduate and undergraduate researchers on campus—and with vast open source international networks, visiting scholars and industrial partners. Currently, most 3-D printing is done with virgin polymer feedstock, but research conducted by Michigan Tech’s MOST lab has shown that using recycled 3-D printing feedstock is not only technically viable, but costs much less, and is better for the environment.

Pearce is the advisor of the multidisciplinary, student-run Open Source Hardware Enterprise, part of Michigan Tech’s award-winning Enterprise Program. Dedicated to the development and availability of open source hardware, the Enterprise team’s main activities: Design and prototype, make and publish—and collaborate with community.

Professor Pearce, when did you first get into engineering? What sparked your interest?

Pearce’s latest book project: Create, Share, and Save Money Using Open-Source Projects (October 2020), soon be published by McGraw Hill.

It happened just as I began to choose what type of graduate school to pursue. I was a physics and chemistry double major at the time. One of my close friends, a physics and math double major, claimed he never wanted to work on science with an application. As for me, I was painfully aware of the enormous challenges facing the world, challenges I believed could at least partially be solved with applications of science. That day my career trajectory took a definite tack towards engineering.

Family and Hobbies?

I live with my wife and children, all consummate makers, in the Copper Country. Old hobby: when flying, picking out how many products I could make for almost no money from the SkyMall catalog. New hobby: sharing how to do it with other people.

Megan, when did you first get into engineering? What sparked your interest?

Throughout high school I had a profound love of mathematics. I took every math class I could, and graduated a semester early. This love of mathematics drove me to engineering. I started my undergraduate degree in 2004, but switched over to Mathematics after an injury and a bad-taste-in-my-mouth experience during a summer engineering job. I graduated during the recession of 2009 and after one year off, decided to return to Michigan Tech for my graduate degree. I had an interest in recycling and earned an MS in Materials Science and Engineering while obtaining a graduate certificate in Sustainability. That’s when I fell in love with 3D printing. My passion has evolved into the union of materials science and additive manufacturing. I push the bounds and perceptions of large-scale additive manufacturing / construction.

Michigan Tech alumna Megan Kreiger is Program Manager for Additive Construction for US Army Corps of Engineers. She is also project manager and technical lead on Additive Manufacturing & Robotics projects.

Hometown, Family and Hobbies?

I grew up in rural Montana with my brother, raised by eco-friendly parents. At Michigan Tech while pursuing my degree, I spent her time hiking, snowboarding Mont Ripley, and backpacking the 44 miles of the Pictured Rocks National Lakeshore with my husband. We now live in Champaign, Illinois, with our two children and our three at-home 3D printers. We spend our time raising chickens, wrangling pets (and kids), and working to modernize the construction industry for the US Military through the integration of concrete 3D printers.

Megan Kreiger and her team completed the first full-sized 3D printed concrete building in the United States, printed entirely in a field environment.

Read more:

MTU Engineering Team Joins Open-source Ventilator Movement

Q&A with the MTU Masterminds of 3D-printed PPE

Just Press Print: 3-D Printing At Home Saves Cash

Power by the People: Renewable Energy Reduces the Highest Electric Rates in the Nation

Husky Bites Returns for the Fall, Starts Monday

What are you doing for supper each Monday night this fall? Join College of Engineering Dean Janet Callahan and special guests at 6 p.m. (EDT) each Monday, for a 20-minute interactive Zoom webinar, followed by a Q&A session.

Launched last June during the pandemic and back by popular demand, the fall season of Husky Bites starts Monday (Sept. 14). Each “bite” is a free, suppertime mini-lecture, presented by a different Michigan Tech faculty member. They’ll weave in a bit of their own personal journey, and bring a co-host, too — an alumnus or current student who knows a thing or two about the topic at hand.

Important note: Even if you registered for Husky Bites last summer, you will need to register again — a second time — for fall at mtu.edu/huskybites.

Know others who might be interested? Feel free to invite a friend. All are welcome. “We’ve had attendees from nine countries, and a great mix of students, alumni, our Michigan Tech community and friends,” says Dean Callahan, who mails out prizes for (near) perfect attendance, too. (Last summer there were Husky Bites t-shirts, and Michigan Tech face masks, sewn right here in Houghton).

The series kicks off Monday (Sept. 14) with a session from Joshua Pearce (ECE/MSE), with co-host Megan Kreiger, Pearce’s first Michigan Tech grad student. Want to know how you can make money turning your household waste into valuable products? Well, you’ve come to the right place. Professor Joshua Pearce and his co-host, alumna Megan Krieger, will cover the exploding areas of distributed recycling and distributed manufacturing. They’ll also explain just how using an open-source approach enables the 3-D printing of products for less than the cost of sales taxes on commercial equivalents.

Get the full scoop and register (or re-register) at mtu.edu/huskybites.


Here’s a quick rundown of our Fall 2020 lineup, below:

Monday, 9/14
Joshua Pearce — “3D Printing Waste into Profit,” with co-host Megan Kreiger, Program Manager, Additive Construction, US Army Engineer Research and Development Center (ERDC) and Michigan Tech (Math ‘09, MSE‘12) alumna.

Monday, 9/21
Bill Sproule (professor emeritus CEE) — “Michigan Tech, and the Stanley Cup,” with co-host John Scott, NHL All-Star MVP and Michigan Tech alumnus (ME ‘10).

Monday, 9/28
Sarah Ye Sun (ME-EM) — “Nice Shirt! Embroidered Electronics and Motion-Powered Devices,” with co-host George Ochieze, a current Michigan Tech student.”

Monday, 10/5
Orhan Soykan (BioMed) — “Prolific Inventing,” with co-host Dr. Tim Kolesar, MD, development quality engineer, Abbott Labs, and a Michigan Tech alumnus (BME ‘19).

Monday, 10/12
Erik Herbert (MSE) — “Holy Grail! Energy Storage on the Nanoscale,” co-host TBD.

Monday, 10/19
Tim Havens (CC) — “Warm and Fuzzy Machine Learning,” with co-host Hanieh Deilamsalehy, a machine learning researcher at Adobe and Michigan Tech alumnus (ECE ‘17).

Monday, 10/26
Paul Bergstrom (ECE) — “Quantum Dot Devices and Single Electron Transistors,” co-host TBD.

Monday, 11/2
Mary Raber (PHC) — “Solving Wicked Problems,” co-host TBD.

Monday, 11/9
David Shonnard (ChE) —” Waste Plastics are Taking Over the World and The Solution is Circular,” co-host TBD.

Monday, 11/16
TBD

Monday, 11/23
Bill Predebon, (Chair ME-EM) — “Say Yes to the Quest,” with co-host Marty Lagina, CEO, Heritage Sustainable Energy, winemaker, Michigan Tech alumnus (ME ‘77), and reality TV show star (Curse of Oak Island): “Say Yes to the Quest,” with co-host Bill Predebon, (Chair ME-EM)

Monday, 11/30
Pengfei Xue (CEE) — “What Superior (the Supercomputer) Tells Us About Superior (the Lake),” co-host TBD.

Monday, 12/7
Raymond Shaw (Physics) — “Lake Superior in My Driveway: Lake Effect Snow in the Keweenaw,” with co-host Will Cantrell, dean of the Graduate School.

Meet Brett Hamlin, Engineering Fundamentals Interim Department Chair

Brett Hamlin, a Michigan Tech mechanical engineering alumnus, now leads the Department of Engineering Fundamentals

The College of Engineering at Michigan Technological University is pleased to announce Dr. Brett Hamlin as interim chair of the Department of Engineering Fundamentals.

Hamlin grew up in Stillwater, Minnesota, and earned a BS in Mechanical Engineering and a PhD in Mechanical Engineering, both at Michigan Tech.

He first joined Michigan Tech as a lecturer in the Department of Engineering Fundamentals in 1998. He is a senior lecturer as well as previous assistant chair in the department.

Hamlin’s teaching interests include graphics, visualization, solid mechanics, design, and thermo sciences. His research interests include educational methods, spatial visualization, heat transfer, and biomechanics. 
 

“I’m excited about this opportunity. I hope to continue to work with the dedicated faculty of the department and continue to push the boundaries of excellence in engineering education.”

Brett Hamlin, Interim Chair, Engineering Fundamentals


“I am delighted that Dr. Hamlin will be Interim Chair of Engineering Fundamentals, joining the leadership team of the college,” added Janet Callahan, Dean of the College of Engineering. “His passion for first year teaching and learning, and his administrative experience strongly prepare him for this leadership role.”

Hamlin serves as faculty advisor for Michigan Tech’s student-run GEAR Enterprise team. The focus of GEAR (General & Expedition Adventure Research) is to design, model, test, prototype, and manufacture a wide variety of goods and equipment used in recreational outdoor and commercial expedition endeavors. Hamlin was a longtime advisor for Michigan Tech’s SAE Baja Enterprise. He also serves as an instructor in the Department of Kinesiology and Integrative Physiology—teaching Outdoor Emergency Care.

A former top Nordic skier, Hamlin is a senior level member of the Ski Patrol, qualified on both snowboard and Alpine skis. He is active in the local mountain biking scene, and on any given weekend you will find the entire Hamlin family out and about, either biking, skiing, hiking, camping, or climbing.

“I like to solve problems and brainteasers, and engineering is just like solving brainteasers in real life.”

Brett Hamlin

Previous department chair, Associate Professor Jon Sticklen, returns to faculty ranks. His focus has broadened to include STEM education research and teaching. He also plans to collaborate with Michigan Tech’s Department of Cognitive Learning and Sciences in its effort to develop a new undergraduate major, Human Factors.

Interested in meeting or talking with Prof. Brett Hamlin? Feel free to reach out via email or stop by his office at 112 Dillman.

Gordon Parker: Control Systems—Math in Motion

Three meters wide x 10 meters long. Eight paddles One-sided glass panel for easy visibility. Can you guess what this is?

Gordon Parker generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

What do machines that move all have in common? Control systems that coordinate the machines. 

Can you recognize a control system when you see one? How about a controlled dynamic system? Well, after 20 minutes with Professor Gordon Parker, John & Cathi Drake Endowed Chair in Mechanical Engineering, you will. And then some…

“My most important and satisfying professional objective is sharing my passion for dynamics and controls with students,” says Dr. Gordon Parker.

“I’ve been working on control system theory and design for (gulp) 32 years with applications such as rockets, spacecraft, ships, cranes, ground vehicles, microgrids, wave energy converters, and more,” says Gordon. “I love working with students and colleagues to field control systems—the bigger, the better.”

Last April, our own Gordon Parker became one of just four instructors at Michigan Tech to receive the inaugural Provost’s Award for Sustained Teaching Excellence. The award brings special recognition to instructors who have been nominated as finalists for the Distinguished Teaching Award four or more times.

Mike Agostini knows firsthand Parker’s effective teaching and mentoring. Nowadays, Agostini is a senior manager of application engineering at The MathWorks in Boston. Back in 2001, he was a graduate student working with Parker to design control strategies for large boom cranes mounted on ships at sea.

“The goal was to minimize vibration from inputs,” explained Agostini. “Inputs could come from operator commands or from ship motion. We injected crane commands on top of the ship-induced motion to minimize vibration of the payloads. The payloads could be 30-plus tons, in containers 40 feet on a side. The chance for uncontrolled swing to damage property or lives was significant. It is for this reason that ship cranes traditionally have been limited to operating in very calm seas,” he says.

Example of a crane operation on a ship.

“The most enjoyable aspect was the tool building,” adds Agostini. “We had both a ship crane (on the ship) as well as a scale model crane at Sandia National Labs. But the utility of using them for day-to-day research was limited. They were simply too expensive and difficult to access regularly. So we built high-fidelity models, and took the algorithms we built and tested in software to the hardware.

“It was and incredible feeling to be on a crane ship rolling back and forth 14 degrees and see a huge 35 meter boom crane automatically actuating to compensate. So much steel and hardware under command of software and algorithms you helped design,” says Agostini. “But better than that was working with Dr. Gordon Parker. He really helped me mature as an engineer. His mentoring has helped make me the person I am today.”

Nowadays, Parker still specializes in control system design, and a key area of his research is the optimal control of microgrids. A microgrid is a local energy grid with control capability, which means it can disconnect from the traditional grid and operate autonomously, or independently.

Underwater robots and autonomous vehicles rely on battery power. When working in the middle of the ocean or other large body of water, charging sources aren’t readily available. Parker is developing a solution for this problem, tapping into the energy that comes from ocean waves.

Parker and his research team work on providing an energy source through a floating microgrid system, or a marine energy grid. “We’re developing control strategies that bridge the gap between the theoretical models and the realistic conditions you find on the ocean,” Parker explains.

Using the wave tank on the Michigan Tech campus, Parker pairs machine learning with model predictive control to help engineers measure key parameters accurately and predict wave energy converter (WEC) behavior. (Hey, and Yes, there is a wave tank in the basement of the R.L. Smith Building, with state-of-the-art instrumentation for WEC studies. Wave tanks create reproducible wave fields to aid the understanding of the motion of submerged and partially submerged bodies, such as underwater vehicles, ships, and WECs.

Michigan Tech’s Wave Tank research facility is located in the Department of Mechanical Engineering-Engineering Mechanics. Among its key uses: developing control systems for wave power, capturing the energy of waves in the ocean, or other large bodies of water.

“There’s a spectrum of wave energy converter systems in development right now. And there’s an opportunity in controlling these systems in interesting and sophisticated ways,” says Parker.

How? “In a control scheme, we look up a device, harmonize with the wave field, and resonate. With reinforcement learning, we can look at what is happening in the wave field and other wave energy converters in the array and try different controls. Our system is penalized if it doesn’t perform well and rewarded if it does,” says Parker.

Wave Energy Converters (WECS) are devices with moving elements directly activated by the cyclic oscillation of waves to harvest energy from ocean waves. Power is extracted by converting the kinetic energy of these displacing parts into electric current.

“We are analyzing the potential of exploiting the interactions between converters in compact arrays. After small scale tank testing we could potentially look at testing in the Great Lakes,” says Parker. 

Michigan Tech students are heavily involved in the research through senior design projects—developing a wave tank testing model of a wireless WEC. And a research team in Parker’s research lab, the Intelligent Systems and Control Laboratory, is creating a WEC array that extracts maximum power.

Another look at the Michigan Tech Wave Tank. Want to see and hear it? Check out the video link at the end of this post.

“These control schemes and marine energy grids have applications beyond refueling unoccupied underwater vehicles,” says Parker. “They can be applied to environmental sensing, too.” That includes monitoring meteorological conditions, sea-water chemical/physical properties, tsunamis and storm surges, fish and other marine life, coastal and sea-floor conditions.

There are microgrids on land, too, of course, and space. Parker is an expert on microgrids of all kinds. At Michigan Tech, he co-founded the Agile and Interconnected Microgrid (AIM) Center to bring together faculty from across campus—Computer Science, Mathematics, Cognitive Sciences and Learning, Electrical and Computer Engineering and Mechanical Engineering—to form an interdisciplinary team. AIM now has 18 researchers spanning seven academic units whose customers include NSF, ONR, NAVSEA, ARL, TARDEC, AFRL, DOE, and Sandia National Laboratories.

When he’s not teaching undergraduates, advising senior design teams, or mentoring graduate students, Parker is creating content for his popular, 64 segment, open source, video series on control system analysis and design. The series is used internationally by students on YouTube.

Before coming to Michigan Tech, Parker was a research fellow at Sandia National Laboratories in Albuquerque, New Mexico, where he developed systems for large angle spacecraft reorientation and fault-tolerant robots. He also worked as an aerospace engineer for General Dynamics Space Systems in San Diego, California, designing trajectories for new launch vehicle systems.

Parker earned a PhD in Mechanical Engineering at SUNY Buffalo, an MS in Aerospace Engineering at the University of Michigan, and a BS in Systems Engineering at Oakland University.

Dr. Parker, when did you first get into engineering? What sparked your interest?

My passion for control systems first occurred in a single, identifiable moment. I was in the third year of my undergrad studies in a class similar to a course at Michigan Tech, Dynamic Systems (MEEM 3750). This is where we learned about differential equation modeling of mixed physics systems—motors, masses, and springs. I was looking out the window at the tree branches swaying in the breeze. (Okay, perhaps I should have been paying attention to the Prof., but the truth is what it is.) That’s when it clicked. The motion of the branches, vibration, was similar to what we were learning—and it could be modeled with math and then controlled.

At that point I was hooked on the notion of using math to predict how things respond to being poked—including machines, the stock market, etc.—and then devising control systems to make them do what you want. By the way, in theory, this should work with people, but I’ve not cracked that nut.

Hometown, Hobbies, Family?

My most important and satisfying professional objective is sharing my passion for dynamics and controls with students—from application-focused undergraduate courses to theory-laced graduate-level material. Hopefully some of that sticks, and is multiplied through their achievements, both professionally and personally.

I’ve been at Michigan Tech for 24 years now, while raising two wonderful kids with my wife, Karen. We now live in the woods outside of town enjoying the wildlife (not the wild life), fitness (usually followed by physical therapy), baking bread, and exploring the esoteric features of MATLAB/Simulink.

Learn More

Play Michigan Technological University Compact 3D Wave Flume video
Preview image for Michigan Technological University Compact 3D Wave Flume video

Michigan Technological University Compact 3D Wave Flume


Audra Morse: Two Triangles Don’t Make a Right

Dr. Audra Morse is focused on water, especially the fate of microplastics in water. When she’s not busy leading the Department of Civil and Environmental Engineering at Michigan Technological University, that is.

Are you heading to college soon to study engineering, or thinking about it? Please join us tonight, Tuesday, July 28 at 6 pm EST for Tips and Tricks from Three Chairs and a Dean, our free interactive Zoom short course. We’d like to show you all the tips and tricks we wish someone had shown us, back when we were all starting out. 

This week the focus is on triangles. Dr. Audra Morse, chair of the Department of Civil & Environmental Engineering at Michigan Tech will be talking triangles. “High school geometry topics you never knew you needed will be put into context to solve engineering problems,” she says. “I’ll provide more engineering survival tips along the way.”

Join us at FB Live on the College of Engineering FB page, or go to the Zoom session (so you can participate in the Q&A).

Grab some supper, or just flop down on your couch. Know someone who might be interested? Feel free to bring or refer a friend. Everyone’s welcome! Get the full scoop and Zoom link at mtu.edu/huskybites.

The Morse Family! They once lived in Texas. Now Dr. Audra Morse (Civil and Environmental Engineering) and Dr. Steve Morse (Department of Mechanical Engineering) make their home at Michigan Tech.

Dr. Morse, when did you first get into engineering? What sparked your interest?

I chose to pursue engineering because I like science. I knew I did not want to be a doctor or a nurse. I did not think a biology or chemistry degree was for me. Engineering allowed me to combine my love of science with math, and make a difference in the world we live in.

Hometown, Family, Hobbies?

I grew up in Spring, Texas, which is just north of Houston. I attended Texas Tech and worked there before moving to Houghton. I have two boys and a wonderful husband. In my spare time I like to paint and walk my loving vizsla and a rowdy german short hair. My hero is Mary Poppins. 

Steve Kampe: Hey, there’s MSE in Your Golf Bag!

True or false: When it comes to golf, it’s not the swing that matters the most—it’s the materials used to make the club. (Ah, unfortunately, false.)


Steve Kampe generously shared his knowledge on Husky Bites, a free, interactive Zoom webinar hosted by Dean Janet Callahan. Here’s the link to watch a recording of his session on YouTube. Get the full scoop, including a listing of all the (60+) sessions at mtu.edu/huskybites.

“The sporting goods industry has a history of using materials as an enticing means to market new products and breakthroughs,” says Steve Kampe, Franklin St. John Professor and Chair of the Department of Materials Science and Engineering at Michigan Tech. “I’m always interested in what materials they uncover, and the marketing strategies they use.”

Kampe likes to use clubs in his golf bag as examples of how materials are designed, and how they work. “There’s fun in finding material science in everyday objects. Everything has to be made out of something,” adds Kampe. “The question is out of what—and how do we make it?”

“Where there are breakthroughs in new products and solutions, chances are an MSE is hard at work, often behind the scenes, at its root source,” says Steve Kampe, professor and chair of the Department of Materials Science and Engineering at Michigan Tech.

These are the questions engineers at Michigan Tech have been asking since the university’s founding in 1885, and the task that graduates from the (MSE) department have excelled at since its inception as one of the two founding departments at the Michigan School of Mines in Michigan’s Upper Peninsula. 

Back then, the department was known as Metallurgy, and its focus was on ways to extract valuable metals, such as copper or iron, from their naturally occurring states within minerals and underground deposits.  

Today, the discipline of materials science and engineering finds ways to use the fundamental physical origins of a material’s behavior in order to optimize its properties. “The invention of a new material could turn out to be a vital part of the solution to many of the challenges we now face,” notes Kampe.

“Since the beginning of recorded history, materials have been used to define our civilizations—and the evolutionary milestones associated with quality of life,” he explains.

“From the stone age to the bronze and iron ages, the materials and the human innovations that addressed the world’s challenges during those time periods, have been inextricably linked. Even today, our ability to address global challenges are heavily reliant on the materials that define our current generation,” he says.

“A lot hinges on the wisdom we possess in implementing in use of materials, and, increasingly, in their re-use.”

Contemporary materials science engineers (MSE’s) not only work with metals and alloys, but also with ceramics and glasses, and with polymers and elastomers. They work with composites, materials for electronic, magnetic and optical applications, and many other emerging materials and processes such as 2-D graphene, nanomaterials and biomaterials. Emerging materials include those for 3D printing (or additive manufacturing), smart materials, specialized sensors, and more.

A ceramic crucible in the Michigan Tech Foundry, containing molten
iron at approx. 1200°C.

“For example, MSEs are prominent in the conception and development of new battery technologies, as well as new lightweight materials that make cars and airplanes more fuel-efficient and reduce their CO2 footprint. MSEs are also involved in the development of new materials for the hydrogen economy, photovoltaics for sustainable solar energy, and materials that can convert kinetic energy into electrical and/or magnetic energy.

“The materials we use in our lives have a huge impact on our long term quality of life—and a huge impact on our ability to someday attain a circular economy and a sustainable world,” adds Kampe.

“Right now, today, we have the tools and data we need to make more intelligent decisions about the materials we use⁠ — to decide which materials, even some not yet invented, that would make the biggest difference. Our goal is to reduce or eliminate our dependence on unsustainable solutions.”

Despite its central importance to all engineering endeavors, MSE as a discipline is relatively small compared to other engineering disciplines such as mechanical, electrical, civil, and chemical engineering. 

Polished surface of ductile cast iron. Micrograph by MSE graduate Dan Frieberg.

“It’s one of the best aspects of being an MSE,” says Kampe. “Class sizes are small, so students are able to build strong networks with classmates, faculty, staff—and with like-minded colleagues from other universities and companies from around the world. Our small size also enables collaborative environments with lots of personal interaction and one-on-one mentoring.”

Not only is Kampe a member of the Michigan Tech faculty, he is also an alumnus, earning a Bachelor’s, Master’s and a PhD in Metallurgical Engineering, all from Michigan Tech. He joined academia after working in the corporate research laboratory for a major aerospace company where scientists and engineers developed new products and technologies for the company’s future. He spent 17 years as an MSE professor at Virginia Tech, before coming full circle back to Michigan Tech.

Microstructure of demagnetized neodymium iron boron (Nd2Fe14B) alloy showing magnetic domain contrast within individual grains; an optical micrograph using polarized illumination. Micrograph by MSE graduate Matt Tianen.


At Michigan Tech, the MSE department manages the university’s suite of scanning electron and transmission electron microscopes, including a unique, high resolution scanning transmission FEI Titan Themis, which all students use, even as undergraduates.

Can you guess what this is? Hint: it’s not a snowflake. A dendrite in an as-cast Zn-Ag alloy. Micrograph by Ehsan Mostaed, post-doctoral research associate.


Have you ever put one of your own golf clubs under a high-powered microscope? Would you ever allow a student, a Michigan Tech alum, or even a community member to do something like that?

Sure. Bring one in. We’ll chop it up and take a good look at it.

When did you first get into engineering? What sparked your interest?

I grew up in Williamston, outside of East Lansing, downstate Michigan. My dad had degrees in agricultural and mechanical engineering, so life on Trailmark Farm was pretty much a hands-on engineering operation. For as long as I can remember, getting an engineering degree was pretty much a given for me—I just didn’t know where it would be from. My two older brothers went to Michigan Tech for engineering and really liked it, so Tech became the obvious destination for me, too. My individuality was manifested by my choice to pursue metallurgical engineering, which has close ties to chemistry and the sciences, my favorite subjects in high school. Perhaps I was also influenced by all the fracture surfaces I created during my time growing up on the farm.

Family and Hobbies?

All four siblings in my family (two brothers, a sister, and me) went to Tech. From those original four, there have been eight additional Huskies from the Kampe clan—three spouses including Associate Provost Jean Kampe; our son, Frank (BS Marketing); a niece and nephew, and two first cousins.

I enjoy spending time outdoors hiking, biking, snowshoeing, and especially tending to the chores on the small farm up near Quincy Mine in Hancock where Jean and I live— growing flowers and harvesting the fruit. In winter, I follow the Huskies, both hockey and basketball. I also skate twice a week in (faculty-rich) hockey gatherings.

And yes, I enjoy golfing but have been denied this passion for the past few years due to a prolonged shoulder injury.

Read more

Universities the World Needs: Michigan Tech MSE
Keys to a Unique Nameplate
Advanced Metalworks Enterprise
MakerMSE

Remembering Roger Kieckhafer


By Glen Archer, Interim Chair, Department of Electrical and Computer Engineering

Roger cared deeply for his students, his family, and his profession. I think that may be the source we can draw upon to comfort our own sense of sadness and grief. The impact he had on hundreds of lives will shine on.

Professor Roger Kieckhafer was an inventor, engineer, researcher, educator, veteran and valued faculty member at Michigan Technological University. He died on Friday, July 17 in a tragic vehicle-bicycle accident. He was 69.

The loss to the faculty and staff in the Department of Electrical and Computer Engineering and the College of Engineering is immense. We will not recover quickly from the shock of his death.

Roger received his Bachelor’s degree in nuclear engineering from the University of Wisconsin Madison in 1974 and earned his Master’s and PhD in electrical engineering from Cornell University in 1982 and 1983, respectively. The years between were spent in service to the United States Navy as a Nuclear Officer aboard the Trident missile submarine USS Abraham Lincoln. He also supervised the construction of the USS Indianapolis. His time in industry was also well spent, producing several patents that were licensed to Allied Signal, now Honeywell Corporation.

Roger was fond of classical music, particularly opera, and sang in the Copper Country Chorale, often accompanied by his daughter, Maggie, on organ. He also sang in the prestigious Pine Mountain Music Festival, including the premiere of the opera Rockland, based on the story of the 1906 miner strike in Rockland, Michigan.

Roger was instrumental in creating the computer engineering degree program at Michigan Tech. Working with Linda Ott in the Department of Computer Science in the College of Sciences and Arts, he bridged the gap between two departments in two separate colleges, crafting a program that educated hundreds—a new breed of engineer steeped in both worlds.

Even after the development of the computer engineering program, Roger’s collaboration with the Department of Computer Science continued. “We worked together on a strategic hiring initiative, multiple curricular issues, reorganization discussions and countless other issues,” said Dr. Linda Ott, Chair of the Department of Computer Science. “Roger was always supportive. He clearly believed that we would have stronger programs working together rather than competing.”

Roger was a strong advocate for the ABET accreditation process in the ECE department. He led the initial ABET accreditation of the Computer Engineering program. The procedures and processes he set in place then are still in play nearly 20 years later, guiding the department’s subsequent accreditation for both its electrical engineering and computer engineering degrees.

In the words of Computer Engineering faculty member Kit Cischke, “For Roger, it always boiled down to what was best for our students. The content of our classes. The things our students needed to know to get good jobs. The assignments. The kinds of things they needed to do in the real world. Students were forever contacting Roger after graduation, saying, ‘Thanks for teaching me that. I’m using it every day in my job.’”

Over the past few days, Roger’s former students have reached out to express their grief and sadness. They have shared how much Roger meant to them during their time at Michigan Tech and how well he prepared them for the success they enjoy today. One of those students was Joseph Rabaut. In his words, “I can’t tell you how devastated I am. Dr. Kieckhafer was an amazing person and one of the best professors at Tech. He helped me a lot throughout the past few years, giving me advice and recommendations, and helping me understand computer engineering. I don’t really know what else to say, because words can’t really describe losing him.”

Roger cared deeply for his students, his family, and his profession. I think that may be the source we can draw upon to comfort our own sense of sadness and grief. The impact he had on hundreds of lives will shine on.

As we move forward, his legacy will live on. As suggested by several people, a scholarship fund will be set up in Roger’s memory.

Roger is survived by his wife, Patricia Kieckhafer; son, Alexander Kieckhafer (Mallika Lavakumar) and thoroughly adored granddaughters, Ananya Kieckhafer and Ishani Kieckhafer of Cleveland, Ohio; daughter, Katherine Kieckhafer of Boston, Massachusetts; and Maggie Kieckhafer (Tahmoures Tabatabaei) of Greensboro, North Carolina.

Roger’s obituary can be read here.

If you have memories of Dr. Roger Kieckhafer, please feel free to post them in the comments section below.

Joe Foster: Through the Looking Glass! Geospatial Wizardry

Joe Foster shares his knowledge on Husky Bites, a free, interactive webinar this Monday, July 13 at 6 pm EST. Learn something new in just 20 minutes, with time after for Q&A! Get the full scoop and register at mtu.edu/huskybites.

What if you had a high-tech job, but spent your work day outside, enjoying nature and fresh air each day? If you like computing, and the great outdoors, you need to learn more about what it takes to become a geospatial engineer.

Joe Foster is a professor of practice in the Department of Civil and Environmental Engineering at Michigan Tech. He teaches courses in the elements of land surveying. He has served as a Principal for successful Land Surveying companies in both Minnesota and Michigan, directing and overseeing a wide range of projects. “I’m also an old Michigan Tech alum, with a Bachelor’s degree in Forestry, and a second Bachelor’s degree in Surveying, both from Michigan Tech,” he notes.

Joe Foster is a professor of practice in the Department of Civil and Environmental Engineering at Michigan Tech.

Studying geospatial engineering is both an adventure and a learning experience, says Foster. A lot of learning⁠—and geospatial wizardry⁠—takes place outdoors, in the field.

“Surveyors are experts at measuring,” Foster explains. “A myriad of equipment have been used over the years to accomplish the task, tools of the trade, so to speak. Over time, Surveying has evolved to become more, known now as Geospatial Engineering.”

Surveyors, now known as Geospatial Engineers, measure the physical features of the Earth with great precision and accuracy, calculating the position, elevation, and property lines of parcels of land. They verify and establish land boundaries and are key players in the design and layout of infrastructure, including roads, bridges, cell phone towers, pipelines, and wind farms.

And they are in demand. “There is an ongoing need for Surveyors,” says Foster. “Jobs are open and can’t be filled fast enough. We have a great need for those with an interest and aptitude for the profession.”

All land-based engineering projects begin with surveying to locate structures on the ground,” says Foster. Numerous industries rely on the geospatial data and products that geospatial engineers provide. With advances in technology, the need is increasing, too⁠—from architectural firms, engineering firms, government agencies, real estate agencies, mining companies and others.

Geospatial engineering students at Michigan Tech use satellite technology GPS and GIS to determine locations and boundaries.

Out in the field, Geospatial Engineers peer “through the looking glass” using numerous tools. “Robotic total stations, GPS receivers, scanners, LiDAR, and UAVs only scratch the surface of what is available in the toolbox,” says Foster.

Three theodolites on campus at Michigan Tech

Advances in GPS technology have led to the use of Geographic Information Systems (GIS) for mapping, as well as geospatial data capture and visualization technologies. Geospatial engineers also use virtual reality integration, Structure from Motion (a technique which utilizes a series of 2-dimensional images to reconstruct the 3-dimensional structure of a scene or object, similar to LiDAR), and unmanned aerial vehicle systems (drones). At Michigan Tech, students learn to use these tools, too.

Geospatial engineering students choose from two concentrations, says Foster. “Professional Surveying prepares students to become state-licensed professional surveyors. Students learn to locate accurate real property boundaries, conduct data capture of the natural/man-made objects on the Earth’s surface⁠—and conduct digital mapping for use in design or planning.” 

Geospatial engineers use drones, too.

The second concentration is Geoinformatics. “Students learn to manage large volumes of digital geo-information that can be stored, manipulated, visualized, analyzed, and shared,” he adds. “Students use more Geographic Information Science (GIS) tools, remote sensing, big data acquisition, and cloud computing.”

Do you love math + computing+ the great outdoors? Geospatial engineering combines all those things.

Once you’re working as a geospatial engineer, you could end up using both concentrations. “Land surveying and geographic information systems (GIS) are complementary tools,” he says.

Foster is excited about the growth of opportunities in the profession. During his own career, Foster worked as a principal for successful land surveying companies in both Minnesota and Michigan, directing and overseeing a wide range of projects, including boundary, county remonumentation, and cadastral (USDA-FS) retracement surveys; topographic, site planning, and flood plain surveys; mine surveys (surface and underground); plats and subdivisions; and both conventional and GPS control surveys. He’s managed contracts with the USDA-Forest Service, mining companies in Northern Minnesota, the State of Michigan, and more. 

Foster is also a member of the Michigan Society of Professional Surveyors (MSPS). At Michigan Tech, he’s advisor to the Douglass Houghton Student Chapter of the National Society of Professional Surveyors (DHSC). Last year the group continued their tradition with the annual General Land Office (GLO) Workshop. Sponsored by DHSC and conducted by Pat Leemon, PS, retired U.S. Forest Surveyor from the Ottawa National Forest, it is a search/perpetuation of an original GLO corner. “That’s a once in a lifetime experience for a Surveyor,” says Foster.

Brockway Mountain, Copper Harbor, Keweenaw County. Getting there will take you on the highest above sea-level drive between the Rockies and the Alleghenies. The peak is the highest point in Michigan.

When did you first get into surveying? What sparked your interest?

I first got interested in Surveying while studying forestry at Michigan Tech.  Surveying was one of the courses in the program. That’s where I learned there could be an entire profession centered on surveying alone.  I was hooked.  It incorporated everything I had come to enjoy about forestry; working outside, using sophisticated equipment, drafting, and actually putting all the math I had learned to practical use. After earning my first bachelor’s degree in Forestry, I decided to get a second bachelor’s degree in Surveying and to pursue that as my career.  

Tell us about your growing up. What do you do for fun?

I was born and raised in Michigan and have worked in the forest product industry and surveying profession for over 25 years. Work has taken me to just about every corner of Northern Minnesota and Michigan’s Copper Country. I came to know my wife, Kate at Fall Camp at Alberta, at Michigan Tech’s Ford Forestry Center. We made our home in the Keweenaw, where we both have strong family ties.

Lake Superior is our first love, and one that we share. Here’s a little known fact….Keweenaw County has the highest proportion of water area to total area in the entire United States, with 541 square miles of land and 5,425 square miles of water. Nearly 90 percent of Keweenaw County is under the surface of Lake Superior!

Janet Callahan Named ASEE Fellow

Janet Callahan, dean of the College of Engineering and professor of materials science and engineering at Michigan Technological University, was initiated on June 24, 2020 as a Fellow of the American Society of Engineering Education.

A global society founded in 1893, ASEE is the preeminent authority on the education of engineering professionals, advancing innovation, excellence and access at all levels of education for the engineering profession.

Callahan was cited for contributions to ASEE and the engineering education community via outstanding leadership, educational scholarship, teaching effectiveness and championing diversity and inclusion within the community. Callahan has (co)authored over 50 ASEE and education publications. She has served in numerous positions in the society, contributes to multiple divisions, and currently serves as Chair of the Women in Engineering Division. 

“I am pleased and honored to join a distinguished community of ASEE Fellows who support engineering education and who have dedicated their careers in support of that purpose,” said Callahan. 

Callahan is among 9 fellows selected this year. The grade of fellow in ASEE is reserved for members with extraordinary qualifications and experience in engineering or engineering technology education or an allied field who have made important individual contributions. No more than one-tenth of one percent of individual ASEE membership may be elected fellow in any given year.